为光子集成电路做准备

在“介绍性延迟”和“崩溃为零”之间的细微张力下,当前的电子集成产业和光子集成电路(PIC)技术之间存在差距。最近的标准运动通过超短距离(XSR)揭示了这种趋势的证据。 )定义,并指出印制光学板(POB)是该生态系统最可能的下一个启用技术。

多年来,光子学已被公认为是电气系统的下一代互连解决方案。但是,预计的里程碑(例如产品发布)会受到介绍性延迟的影响。这些延迟有两个主要原因。

电气串行器/解串器(SerDes)接口导致了革命性的技术,扩展了铜介质的使用。但是,这些发展总是将光子学的首次亮相拖回某种程度上,我们称之为引入延迟。例如,SerDes技术能够补偿固有的材料问题,例如介电损耗引起的损耗或损耗因子(Df),以及通过信号调节器(例如连续时间线性均衡器(CTLE),前馈均衡器)产生的反射噪声。 (FFE)和决策反馈均衡器(DFE)。其他因素,例如机械设计创新,也会导致延迟。例如,远端串扰(FEXT)是抑制数据速率的主要原因。

Figure-1-Hirose-Electric-IT8-Series-768x161.png

图1:Hirose Electric的IT8系列夹层连接器采用FEXT取消技术,可将远端串扰噪声降低一个数量级。

随着相关技术的发展产生干扰,延迟也可能发生。例如,现有的互连产业在板级,系统级和芯片级集成中起着重要作用。该技术仅基于电子印刷电路板或基板技术。尽管PIC技术也基于Maxwell方程,但该技术领域及其原理与光子集成电路(PIC)技术不同。PIC对电磁波解决方案施加了不同的边界条件:在电子领域,两个导体用于引导电磁波,而光子学中的互连使用一种被另一种介电材料包围的介电材料来传播电磁波。光子学中不涉及导体,而不是电子世界中的多种导体。同样,与目前的电子产品相比,光子学需要解决的频率范围在几百太赫兹的范围内。另一个拖累因素是与电子社会相比,光子学行业的标准制定活动相对较弱,在电气社会中,标准活动产生了产品和应用知识的生态系统。

从历史和体系结构的角度对高速连接进行回顾,发现了一些对连接器行业有意义的见解。

高速连接的趋势

随着连接的比特率随时间增加,印刷的铜走线长度减小。在图2中,该长度似乎崩溃为零。在这种情况下,连接器公司如何填补这一技术空白?

Figure2-Copper-trace-length-for-high-speed-connectivity-over-time-1.png

图2:随着时间推移的高速连接的铜线长度

另一个值得注意的趋势如图3所示,该曲线由SerDes生态系统本身预测。诸如小型可插拔(SFP)之类的传统光子模块是光学系统进入电气系统的入口点,该系统看起来类似于小型电气组件。它的一部分适应于通向片上系统(SoC)或集成电路的熟悉的PCB电气铜走线,而另一半适应于通向外部世界或不在平面内的光纤。

Figure3-Over-time-optical-modules-closer-to-SoC.png

图3:随着时间的流逝,光模块越来越接近SoC。

多年来,SoC(带有SerDes)和光模块之间的距离越来越近。正如铜迹向零倒塌的趋势所预测的那样,它们正在合并,如图2所示。

光学互联网络论坛(OIF)已提议使用超短距离(XSR)接口,在这种情况下,该模块可以被视为小芯片或多芯片模块(MCM)的组成部分。XSR定义了将电子和光学芯片封装在MCM基板上的模块。XSR的模块I / O既包括用于汇总数据流量的光纤,又包括用于控制和低速信号的电焊盘/引脚。XSR是图3中Gen.3的典型示例。

了解PIC

每当发生光子引入延迟时,光子工程师就会将焦点转移到芯片内部,从而减少与电气世界的交互。这导致光子电路越来越多地被集成,以至于我们有时称它们为硅光子(或更广泛地称为光子集成电路)。现在,现有的电子集成行业正在准备学习光子集成电路(PIC)的下一步发展。

PIC概念起源于1990年代,当时开发了密集波分复用(DWDM)骨干系统并将其部署到城市基础设施网络。当时,工程师为下一代DWDM系统提出了一种基于二氧化硅的阵列波导(AWG)滤波器。AWG过滤器有助于轻松进行温度控制,并且安装时不会造成混乱。它们已在城市网络中用作通用的分插多路复用器,这是现有的基于二向色性光学板的DWDM滤波器的替代解决方案,该滤波器体积庞大且需要手动组装才能生产,并且对温度控制的可靠性较低(图4)。

Figure4-AWG-first-printed-optical-component-2D-plane.png

图4:AWG是DWDM系统在2D平面上的第一个印刷光学组件。

从那时起,已经发明,生产和成功部署了更多创新的PIC子电路或光子电池。主要PIC子电路的时间表(绿线)如图5所示。其中一些早于PIC时代(蓝线)早于电信市场作为分立元件。它们直接集成在PIC中或作为多芯片模块共同封装。

Figure5-photonic-cells-increase.png

图5:随着光子细胞的增加,组合爆炸。

让我们回顾一下我们的常识,为PIC做准备。诸如分布式反馈(DFB)或垂直腔表面发射激光器(VCSEL)之类的激光二极管是连续波(CW)光束的来源。光束将通过强度调制器(例如,针对其幅度的马赫曾德尔调制器(MZM)或电吸收调制器(EAM))和/或针对其载波相位的相位调制器针对其自身格式进行进一步信号处理。注意,术语“载波”是指大约几百太赫兹的实际光学载波,术语“ CW”强调了该载波尚未调制的事实。调制的光信号可能会通过PIC内部互连的波导,并往返于每个光学功能块(单元),有时会进一步通过合路器和/或分路器用于扇入或扇出。
 
值得一提的是,每个单元可以协同工作以创建越来越复杂的功能块。作为一个代表性示例,强度调制器和相位调制器的组合可以产生正交幅度调制(QAM)或高阶调制(HOM)调制器,正如人们可以从架构上想象的那样。

带宽不仅很重要,而且在自由空间中操纵光束一直是汽车市场的另一个高级主题,在该市场中,相控阵天线(PAA)在组合这些光子电池方面起着重要作用(图6)。

Figure6-LiDAR-using-photonics-cells-300x291.png

图6:使用光子电池的LiDAR(PAA)
 
片外光纤总线  

随着崩溃的可能性接近零,人们可以轻松地想象光连接器应该拥挤在SoC的附近。不幸的是,在这种拥挤的总线环境中没有光学I / O标准。PIC的输入和输出(相当于电气世界的I / O缓冲区和焊盘),我们称为片外光总线,似乎没有任何候选解决方案,行业共识或标准活动。这是一个涉及PIC组件的连接器公司面临的一个明显而直接的问题,也是近期的挑战。

PIC的两种主要芯片外互连类型是(1)直接耦合到垂直光栅耦合器(VGC),如图7所示,以及(2)传统的边缘对接耦合和点尺寸转换器(相关仿真如图2所示)。图8)。第一种方法是从PIC的表面光栅提供光纤耦合。尽管它具有有限的带宽,更多的耦合损耗和偏振相关损耗(PDL),但在量产至关重要时,它会获得更多共识。第二种方法通常提供非常低的PDL和耦合损耗。但是,在对PIC进行处理时,在将晶圆切成小块之前,不可能选择一个已知的良好管芯。

Figures-7-and-8-768x286.jpeg

图7(左):PIC上的VGC耦合到光纤。图8(右):点尺寸转换器仿真示例(使用Lumerical的MODE仿真器)。

请注意,对于这两种情况,光纤都是直接与PIC耦合或从PIC直接耦合的光纤。这是由于缺乏中间技术的缘故,尽管有些公司致力于推广该中间技术(例如,通过使用电光电路板[EOCB])[1]。一些公司促进嵌入传统PCB的光互连。

将印刷光学板(POB)引入电气生态系统

如上一节所述,SoC附近的光连接过于拥挤是一个紧迫的难题。对于这种连通性拥挤的简单答案可以通过在物理尺寸方面提供缓解阶段来实现。假设我们有一个PIC和多光纤连接器要从SoC连接到典型的光连接器,例如多光纤拉入/拉出(MPO)和标准连接器(SC)。一种可能的答案是使用给定数量的连接器进行扇入/扇出。使用当前的技术,例如MPO [2]或SC,很明显,我们会看到笨重的光纤束和机械光纤外壳。
 
我们想提出的中间溶液,聚合物波导(图9)[ 3,4 ],与现有的互联技术,以减轻的问题。如图10(a)所示,装配有符合特定规格的连接器后,我们将该板称为印刷光学板(POB)。POB有助于实现从微型PIC世界到宏光纤世界的平稳过渡。

Figure9-A-polymer-waveguide-example-1-300x222.png

图9:来自ChemOptics的聚合物波导示例。
 
聚合物波导膜与电子PCB非常相似,因为它可以承载信号并可以在二维平面上进行图案化。它可以是2.5维的光学通孔结构。它也可以物理覆盖在现有的电气PCB上,以提供备用的高速路径,为图10(a)所示的零塌陷做好准备。但是,它在承载光信号而不是电信号的意义上不同于PCB。因此,连接器和波导原则上需要通过控制麦克斯韦方程式在数百太赫兹的频率范围内使用不同的算法进行分析,主要用于没有任何金属边界的异质介电系统中的基本横向电磁(TEM)模式。EDA工具,例如Lumerical [5]可以轻松用于设计和仿真此类互连。

Figure-10.jpg

图10:POB类型(a)在PCB上覆盖POB(b)嵌入光波导。绿线表示光路。

图10显示了两种类型的POB的:(a)该更有可能在将来更靠近和(b)现有的建议从一些公司[待产品化的方法1,6]。图10(a)中所示的光学层经过单独处理,并在组装时覆盖在经过预处理的PCB上。这需要精确的处理,以将PIC(光学芯片)对准POB,并将POB对准PCB。但是,PCB和POB具有自己完全成熟,可靠且具有成本效益的制造工艺。图10(b)中所示的光波导芯层嵌入了PCB材料和工艺中。由于光学层和电气层在制造过程中是对齐的,因此装配车间不需要提供额外的对齐。但是,材料系统需要新的层压工艺,这会增加成本并产生未知的现场产品可靠性。

Figure11-POB-provides-cost-reduction-and-reliability-enhancements-768x202.png

图11:POB作为PIC的中间互连解决方案,可降低成本并提高可靠性。

最突出的好处是节省成本。图11中的十字标记表示可以减少所需组件的每个点,例如需要额外空间的光纤缓冲和带有支架的光纤处理机械外壳。值得注意的是,悬空光纤会产生另一种相干噪声源。因此,固定膜或固定板上的光学互连可提供更高的稳定性,免受振动和温度梯度的影响,而带宽增加时,这种影响会放大。同样,它通过减少几个手动装配点来提高制造可靠性,从而降低了总体成本。

A型POB申请

图12显示了有关连接器放置的详细信息。在位置1(P1)上,应封装I / O的裸芯片(PIC)并应将其与光信号良好耦合,应重新定义P1连接器,并根据其模式和强度耦合进行指定接口的两侧(例如,一侧是PIC,另一侧是POB波导)。考虑到PIC接口通常是为单模光纤(SMF)设计的,因此假设SMF接口技术很容易获得,P1连接器应专注于POB波导耦合效率。

在P2处,已经用事实上的SMF和多模光纤(MMF)标准定义了一半的接口。由于对数据中心等高端系统的需求很高,预计SMF接口将首先进入市场。因此,假设SMF接口技术很容易,P2连接器需要专注于具有合理机械对准的POB波导模式可用。

Figure12-POB-application-in-Gen2-integration-768x314.png

图12:Gen2集成示例中的POB应用程序。

结论

我们回顾了其余电子系统的硅光子学或PIC的集成方面。我们发现,在介绍性延迟与崩溃为零之间的微妙张力下,当前的电子集成行业与PIC技术之间存在差距。但是,最近的标准运动,例如OIF,通过XSR定义揭示了崩溃为零趋势的证据。考虑到该领域的这些变化,我们认为生态系统最可能的下一个支持技术是POB,以为从崩溃到零的时代准备一个经济,可靠的解决方案。从体系结构角度审查和解释了A型POB连接器。PIC到POB和POB到PCB对准技术应该是关键的开发目标。P1连接器和P2连接器都需要POB波导和SMF(或其等效物)之间有效的基本模式耦合。建议进一步研究,以结合最先进的SerDes通道配置优化SMF(或类似SMF)接口的POB波导。
 
【摘自Bishop杂志,作者:Hirose Electric,Inc. 光子公司的Kihong(Joshua)Kim和Jeremy Buan , January 28, 2020】

0 个评论

要回复文章请先登录注册