USB_C
HDMI 发布 USB Type-C 连接器的替代模式
技术分享 • atangge 发表了文章 • 0 个评论 • 2077 次浏览 • 2016-09-06 11:41
实现将本机 HDMI 信号传送至无适配器或硬件保护装置的4K/超高清显示器
北京--(美国商业资讯)--HDMI特许公司今日发布HDMI创立者针对USB Type-C™ 规范开发的HDMI 替代模式。这使具有HDMI功能的源设备可以利用USB Type-C连接器直接连接到具有HDMI功能的显示器,无需繁琐的协议及连接器适配器或硬件保护装置,通过单根线缆传输本机的HDMI信号。
该发布实现了当下最流行连接解决方案中两大方案的协作。USB Type-C 连接器外形小巧、正反都能插,且具有多种用途,广泛应用于智能手机、平板电脑和个人电脑产品中。HDMI是领先的显示器接口,已安装在数十亿台显示器上。预计2016年具有HDMI功能的显示设备发货量将达到近 2.9亿台,其中包括投影仪、显示器和100%的平板电视机。
HDMI替代模式将全面支持HDMI 1.4b功能,例如:高达4K的分辨率、音频回传通道(ARC)、3D、HDMI以太网通道和消费类电子设备控制(CEC)。HDMI线缆将利用源端的USB Type-C连接器与显示器端的任何HDMI连接器。其他替代模式显示技术需要各种适配器或硬件保护装置才能连接到 HDMI显示器,而使用HDMI替代模式时,通过单根USB Type-C至HDMI线缆便可轻松实现连接。
“USB Type-C连接器在手机和个人电脑市场发展迅猛,”HDMI特许公司总裁Rob Tobias先生说道,“消费者期望能够通过一根USB Type-C至HDMI线缆轻松将这些设备连接到显示器,并使用到本机HDMI的性能与功能。此规范将导致更多源设备采用HDMI。HDMI致力于不断发展,以满足全球1600多家生产HDMI产品的企业需求,HDMI设备的出货量已达到了近60亿台,并在持续增长。”
“许多类型的消费类电子产品需要采用单个解决方案来传输音频、视频、数据与电源,USB Type-C正是此类产品的首选连接器,”USB-IF总裁兼首席运营官Jeff Ravencraft表示,“使用USB Type-C轻松将设备连接到普遍具有HDMI功能的电视机,为消费者带来极大好处。我们还与HDMI 特许公司协作,确保当USB Type-C设备支持HDMI替代模式时,消费者能够识别出来。”
所有HDMI采用者可以访问www.hdmi.org,了解USB Type-C上HDMI 1.4b替代模式规范。
有关 USB Implementers Forum (USB-IF) 或 USB Type-C 规范的更多信息,请访问 www.usb.org。
关于HDMI特许公司(HDMI Licensing, LLC)
HDMI特许公司是授权许可HDMI规范的代理机构。HDMI规范将未经压缩的高清视频、多声道音频和数据整合到同一个数字接口中,通过单根线缆提供极为清晰的数字影音质量。HDMI特许公司提供营销、推广、授权许可和管理服务,同时还向采纳者、零售商和消费者宣传普及HDMI规范的优势。HDMI的创立者包括日立Maxell有限公司、皇家菲利浦电子有限公司、莱迪思半导体、松下公司、索尼公司、特艺集团和东芝公司。HDMI特许公司是莱迪斯半导体的全资子公司。如需了解更多HDMI规范的信息,请访问 www.hdmi.org。
以下为HDMI特许公司在美国以及其他国家所使用的商标或注册商标—HDMI、HDMI高清晰度多媒体接口(HDMI High-Definition Multimedia Interface)、高级HDMI线缆认证计划(Premium HDMI Cable Certification Program)、高级高速HDMI线缆(Premium High Speed HDMI Cable)、支持以太网络连接的高级高速HDMI线缆(Premium High Speed HDMI Cable with Ethernet)、高级HDMI线缆标识(the Premium HDMI Cable label)、高级HDMI线缆徽标(Premium HDMI Cable Logo)和HDMI徽标(the HDMI Logo)。
USB Type-C™ 和 USB-C™ 是 USB Implementers Forum 的商标。
在 businesswire.com 上查看源版本新闻稿: http://www.businesswire.com/ne ... h-CN/ 查看全部
北京--(美国商业资讯)--HDMI特许公司今日发布HDMI创立者针对USB Type-C™ 规范开发的HDMI 替代模式。这使具有HDMI功能的源设备可以利用USB Type-C连接器直接连接到具有HDMI功能的显示器,无需繁琐的协议及连接器适配器或硬件保护装置,通过单根线缆传输本机的HDMI信号。
该发布实现了当下最流行连接解决方案中两大方案的协作。USB Type-C 连接器外形小巧、正反都能插,且具有多种用途,广泛应用于智能手机、平板电脑和个人电脑产品中。HDMI是领先的显示器接口,已安装在数十亿台显示器上。预计2016年具有HDMI功能的显示设备发货量将达到近 2.9亿台,其中包括投影仪、显示器和100%的平板电视机。
HDMI替代模式将全面支持HDMI 1.4b功能,例如:高达4K的分辨率、音频回传通道(ARC)、3D、HDMI以太网通道和消费类电子设备控制(CEC)。HDMI线缆将利用源端的USB Type-C连接器与显示器端的任何HDMI连接器。其他替代模式显示技术需要各种适配器或硬件保护装置才能连接到 HDMI显示器,而使用HDMI替代模式时,通过单根USB Type-C至HDMI线缆便可轻松实现连接。
“USB Type-C连接器在手机和个人电脑市场发展迅猛,”HDMI特许公司总裁Rob Tobias先生说道,“消费者期望能够通过一根USB Type-C至HDMI线缆轻松将这些设备连接到显示器,并使用到本机HDMI的性能与功能。此规范将导致更多源设备采用HDMI。HDMI致力于不断发展,以满足全球1600多家生产HDMI产品的企业需求,HDMI设备的出货量已达到了近60亿台,并在持续增长。”
“许多类型的消费类电子产品需要采用单个解决方案来传输音频、视频、数据与电源,USB Type-C正是此类产品的首选连接器,”USB-IF总裁兼首席运营官Jeff Ravencraft表示,“使用USB Type-C轻松将设备连接到普遍具有HDMI功能的电视机,为消费者带来极大好处。我们还与HDMI 特许公司协作,确保当USB Type-C设备支持HDMI替代模式时,消费者能够识别出来。”
所有HDMI采用者可以访问www.hdmi.org,了解USB Type-C上HDMI 1.4b替代模式规范。
有关 USB Implementers Forum (USB-IF) 或 USB Type-C 规范的更多信息,请访问 www.usb.org。
关于HDMI特许公司(HDMI Licensing, LLC)
HDMI特许公司是授权许可HDMI规范的代理机构。HDMI规范将未经压缩的高清视频、多声道音频和数据整合到同一个数字接口中,通过单根线缆提供极为清晰的数字影音质量。HDMI特许公司提供营销、推广、授权许可和管理服务,同时还向采纳者、零售商和消费者宣传普及HDMI规范的优势。HDMI的创立者包括日立Maxell有限公司、皇家菲利浦电子有限公司、莱迪思半导体、松下公司、索尼公司、特艺集团和东芝公司。HDMI特许公司是莱迪斯半导体的全资子公司。如需了解更多HDMI规范的信息,请访问 www.hdmi.org。
以下为HDMI特许公司在美国以及其他国家所使用的商标或注册商标—HDMI、HDMI高清晰度多媒体接口(HDMI High-Definition Multimedia Interface)、高级HDMI线缆认证计划(Premium HDMI Cable Certification Program)、高级高速HDMI线缆(Premium High Speed HDMI Cable)、支持以太网络连接的高级高速HDMI线缆(Premium High Speed HDMI Cable with Ethernet)、高级HDMI线缆标识(the Premium HDMI Cable label)、高级HDMI线缆徽标(Premium HDMI Cable Logo)和HDMI徽标(the HDMI Logo)。
USB Type-C™ 和 USB-C™ 是 USB Implementers Forum 的商标。
在 businesswire.com 上查看源版本新闻稿: http://www.businesswire.com/ne ... h-CN/ 查看全部
实现将本机 HDMI 信号传送至无适配器或硬件保护装置的4K/超高清显示器
北京--(美国商业资讯)--HDMI特许公司今日发布HDMI创立者针对USB Type-C™ 规范开发的HDMI 替代模式。这使具有HDMI功能的源设备可以利用USB Type-C连接器直接连接到具有HDMI功能的显示器,无需繁琐的协议及连接器适配器或硬件保护装置,通过单根线缆传输本机的HDMI信号。
该发布实现了当下最流行连接解决方案中两大方案的协作。USB Type-C 连接器外形小巧、正反都能插,且具有多种用途,广泛应用于智能手机、平板电脑和个人电脑产品中。HDMI是领先的显示器接口,已安装在数十亿台显示器上。预计2016年具有HDMI功能的显示设备发货量将达到近 2.9亿台,其中包括投影仪、显示器和100%的平板电视机。
HDMI替代模式将全面支持HDMI 1.4b功能,例如:高达4K的分辨率、音频回传通道(ARC)、3D、HDMI以太网通道和消费类电子设备控制(CEC)。HDMI线缆将利用源端的USB Type-C连接器与显示器端的任何HDMI连接器。其他替代模式显示技术需要各种适配器或硬件保护装置才能连接到 HDMI显示器,而使用HDMI替代模式时,通过单根USB Type-C至HDMI线缆便可轻松实现连接。
“USB Type-C连接器在手机和个人电脑市场发展迅猛,”HDMI特许公司总裁Rob Tobias先生说道,“消费者期望能够通过一根USB Type-C至HDMI线缆轻松将这些设备连接到显示器,并使用到本机HDMI的性能与功能。此规范将导致更多源设备采用HDMI。HDMI致力于不断发展,以满足全球1600多家生产HDMI产品的企业需求,HDMI设备的出货量已达到了近60亿台,并在持续增长。”
“许多类型的消费类电子产品需要采用单个解决方案来传输音频、视频、数据与电源,USB Type-C正是此类产品的首选连接器,”USB-IF总裁兼首席运营官Jeff Ravencraft表示,“使用USB Type-C轻松将设备连接到普遍具有HDMI功能的电视机,为消费者带来极大好处。我们还与HDMI 特许公司协作,确保当USB Type-C设备支持HDMI替代模式时,消费者能够识别出来。”
所有HDMI采用者可以访问www.hdmi.org,了解USB Type-C上HDMI 1.4b替代模式规范。
有关 USB Implementers Forum (USB-IF) 或 USB Type-C 规范的更多信息,请访问 www.usb.org。
关于HDMI特许公司(HDMI Licensing, LLC)
HDMI特许公司是授权许可HDMI规范的代理机构。HDMI规范将未经压缩的高清视频、多声道音频和数据整合到同一个数字接口中,通过单根线缆提供极为清晰的数字影音质量。HDMI特许公司提供营销、推广、授权许可和管理服务,同时还向采纳者、零售商和消费者宣传普及HDMI规范的优势。HDMI的创立者包括日立Maxell有限公司、皇家菲利浦电子有限公司、莱迪思半导体、松下公司、索尼公司、特艺集团和东芝公司。HDMI特许公司是莱迪斯半导体的全资子公司。如需了解更多HDMI规范的信息,请访问 www.hdmi.org。
以下为HDMI特许公司在美国以及其他国家所使用的商标或注册商标—HDMI、HDMI高清晰度多媒体接口(HDMI High-Definition Multimedia Interface)、高级HDMI线缆认证计划(Premium HDMI Cable Certification Program)、高级高速HDMI线缆(Premium High Speed HDMI Cable)、支持以太网络连接的高级高速HDMI线缆(Premium High Speed HDMI Cable with Ethernet)、高级HDMI线缆标识(the Premium HDMI Cable label)、高级HDMI线缆徽标(Premium HDMI Cable Logo)和HDMI徽标(the HDMI Logo)。
USB Type-C™ 和 USB-C™ 是 USB Implementers Forum 的商标。
在 businesswire.com 上查看源版本新闻稿: http://www.businesswire.com/ne ... h-CN/
北京--(美国商业资讯)--HDMI特许公司今日发布HDMI创立者针对USB Type-C™ 规范开发的HDMI 替代模式。这使具有HDMI功能的源设备可以利用USB Type-C连接器直接连接到具有HDMI功能的显示器,无需繁琐的协议及连接器适配器或硬件保护装置,通过单根线缆传输本机的HDMI信号。
该发布实现了当下最流行连接解决方案中两大方案的协作。USB Type-C 连接器外形小巧、正反都能插,且具有多种用途,广泛应用于智能手机、平板电脑和个人电脑产品中。HDMI是领先的显示器接口,已安装在数十亿台显示器上。预计2016年具有HDMI功能的显示设备发货量将达到近 2.9亿台,其中包括投影仪、显示器和100%的平板电视机。
HDMI替代模式将全面支持HDMI 1.4b功能,例如:高达4K的分辨率、音频回传通道(ARC)、3D、HDMI以太网通道和消费类电子设备控制(CEC)。HDMI线缆将利用源端的USB Type-C连接器与显示器端的任何HDMI连接器。其他替代模式显示技术需要各种适配器或硬件保护装置才能连接到 HDMI显示器,而使用HDMI替代模式时,通过单根USB Type-C至HDMI线缆便可轻松实现连接。
“USB Type-C连接器在手机和个人电脑市场发展迅猛,”HDMI特许公司总裁Rob Tobias先生说道,“消费者期望能够通过一根USB Type-C至HDMI线缆轻松将这些设备连接到显示器,并使用到本机HDMI的性能与功能。此规范将导致更多源设备采用HDMI。HDMI致力于不断发展,以满足全球1600多家生产HDMI产品的企业需求,HDMI设备的出货量已达到了近60亿台,并在持续增长。”
“许多类型的消费类电子产品需要采用单个解决方案来传输音频、视频、数据与电源,USB Type-C正是此类产品的首选连接器,”USB-IF总裁兼首席运营官Jeff Ravencraft表示,“使用USB Type-C轻松将设备连接到普遍具有HDMI功能的电视机,为消费者带来极大好处。我们还与HDMI 特许公司协作,确保当USB Type-C设备支持HDMI替代模式时,消费者能够识别出来。”
所有HDMI采用者可以访问www.hdmi.org,了解USB Type-C上HDMI 1.4b替代模式规范。
有关 USB Implementers Forum (USB-IF) 或 USB Type-C 规范的更多信息,请访问 www.usb.org。
关于HDMI特许公司(HDMI Licensing, LLC)
HDMI特许公司是授权许可HDMI规范的代理机构。HDMI规范将未经压缩的高清视频、多声道音频和数据整合到同一个数字接口中,通过单根线缆提供极为清晰的数字影音质量。HDMI特许公司提供营销、推广、授权许可和管理服务,同时还向采纳者、零售商和消费者宣传普及HDMI规范的优势。HDMI的创立者包括日立Maxell有限公司、皇家菲利浦电子有限公司、莱迪思半导体、松下公司、索尼公司、特艺集团和东芝公司。HDMI特许公司是莱迪斯半导体的全资子公司。如需了解更多HDMI规范的信息,请访问 www.hdmi.org。
以下为HDMI特许公司在美国以及其他国家所使用的商标或注册商标—HDMI、HDMI高清晰度多媒体接口(HDMI High-Definition Multimedia Interface)、高级HDMI线缆认证计划(Premium HDMI Cable Certification Program)、高级高速HDMI线缆(Premium High Speed HDMI Cable)、支持以太网络连接的高级高速HDMI线缆(Premium High Speed HDMI Cable with Ethernet)、高级HDMI线缆标识(the Premium HDMI Cable label)、高级HDMI线缆徽标(Premium HDMI Cable Logo)和HDMI徽标(the HDMI Logo)。
USB Type-C™ 和 USB-C™ 是 USB Implementers Forum 的商标。
在 businesswire.com 上查看源版本新闻稿: http://www.businesswire.com/ne ... h-CN/
销售额900milUSD,CAGR20%的连接器市场还有吗?---当然有!!!
技术分享 • 炮灰 发表了文章 • 0 个评论 • 2029 次浏览 • 2016-06-28 17:52
USB(通用串行总线 )I/O 确实是名至实归,从20年前的标准制定大会开始这个产品就逐渐成为电子产品的当之无愧的霸主,无所不在。今天我们就来小叙一下USB的发展史,让我们从USB1.0开始吧。
USB1.0其实是用来给一开始的计算机外设准备的标准,但是的传输速率只有12Mb/s,紧凑的4路信号通道,可以支持热插拔功能,简单的试配软件即可轻松连接外加设备到主机上。连接器有两种不同的壳体,即A&B型。主机可以最多连接127个外设产品附件,很小的插入力可以保证连接器在窄小的空间仍可以使用。5v的低电压也可以驱动外接设备,尤其是紧凑的外形和耐用性使其在通用计算机外设和消费电子产品中得以广泛运用。
2001年,为了提高传输速率,USB2.0的诞生了!这也是印证了USB是一个拥有自我发展与完善基因的产品线。USB2.0可以向下兼容USB1.0,所用的界面都是一致的,速率提高到了480Mb/s. 但是运用范围已经远远超过了电脑外设的范畴,拓展到了游戏、存储、音视频产品,GPS,智能电话,数码影像等等领域。紧接着随着随身携带设备的普及,Mini 和Micro USB标准也就应运而是生,并且在事实上已经成为了随身携带设备接口的行业标准。
随着更高速率及大容量视频文件的传播,人们需要更快速度的接口产品这样以来就在2008年底,诞生了USB3.0.它的理论传输速度已经到达5Gb/s, 相当于10倍USB2.0的传输速率。在其他方面3.0也比2.0的要好,比如它的功耗只有后者的不到一半,这一特性对当今的移动设备市场是个很大的推动。传输电流从500毫安涨到900毫安,在原有线路上扩容5根线(2对差分信号1个地线),而且还是可以兼容USB2.0.
大家还记得A&B型是为了防止插错吗?一般A用在主机端,B用在外围设备中。USB3.0A可以完全向下兼容2.0但是USB3.0B是不可对接USB2.0母端的。
最具竞争力的产品来自于INTEL开发的thunderbolt连接器,目前已经广泛运用到APPLE的产品中,传输速率10Gb/s左右,目前已经有部分高端存储器采用这种方案。
为了让大家都享有10G的传输速率,USB论坛在2013年7月发布了USB3.1。还是采用标准A和Micro-B两种形式,900mA,5V,都没有变化。它解决了人们对普通USB产品有配接方向性的抱怨。
INTEL最近发布了Thunderbolt3.0产品,会兼容USB-C产品形式,并将拥有20Gb/s,将来目标是40Gb/s的产品。
有迹象表明Type C将替换目前所有其他的USB家庭成员的形式,今后3年多时间里,它将跟随人们的脚步,在高速率、用户友好性、低产品高度、耐用性等方面迅速宽展用户群体。
Product Description
A. Interface type: Leaf spring on beam
B. Common trade names: SuperSpeed USB 3.0 / 3.1 SuperSpeed +, USB Type C, Gigalight
C. Most common packaging level: Level 6
D. Contact centerlines: 1.0mm
E. Wire or PCB termination method: Crimp/solder/weld on wire, through-hole, surface mount
on PCB.
F. Applicable industry standards: USB 3.0, 3.1, Type C
G. Competitive differentiating features: Price, production proximity to point of use, plating
quality.
Performance Ratings
A. Contact current rating: 0.5 amps ( Scalable up to 5 amps per connector)
B. Voltage rating: 30 volts, with some variation among suppliers
C. Available # of contact positions: 9 pin on 3.0 and 3.1, 24 on Type C
D. Rated mating cycles: Standard series = 1500, High durability series = 5,000, Type C = 10,000
E. Impedance: Differential impedance =75-105 ohms, +/- 15 Ohms (Average = 90 ohms)
F. High-speed bandwidth: to 10 Gb/s maximum
Product Market Data
Industry Segments / Typical Applications: Telecom, computer, consumer and industrial I/O.
Major Suppliers
Amphenol, FCI Electronics, Foxconn, Hirose, JAE, JST, Molex, Samtec, TE Connectivity 查看全部
USB1.0其实是用来给一开始的计算机外设准备的标准,但是的传输速率只有12Mb/s,紧凑的4路信号通道,可以支持热插拔功能,简单的试配软件即可轻松连接外加设备到主机上。连接器有两种不同的壳体,即A&B型。主机可以最多连接127个外设产品附件,很小的插入力可以保证连接器在窄小的空间仍可以使用。5v的低电压也可以驱动外接设备,尤其是紧凑的外形和耐用性使其在通用计算机外设和消费电子产品中得以广泛运用。
2001年,为了提高传输速率,USB2.0的诞生了!这也是印证了USB是一个拥有自我发展与完善基因的产品线。USB2.0可以向下兼容USB1.0,所用的界面都是一致的,速率提高到了480Mb/s. 但是运用范围已经远远超过了电脑外设的范畴,拓展到了游戏、存储、音视频产品,GPS,智能电话,数码影像等等领域。紧接着随着随身携带设备的普及,Mini 和Micro USB标准也就应运而是生,并且在事实上已经成为了随身携带设备接口的行业标准。
随着更高速率及大容量视频文件的传播,人们需要更快速度的接口产品这样以来就在2008年底,诞生了USB3.0.它的理论传输速度已经到达5Gb/s, 相当于10倍USB2.0的传输速率。在其他方面3.0也比2.0的要好,比如它的功耗只有后者的不到一半,这一特性对当今的移动设备市场是个很大的推动。传输电流从500毫安涨到900毫安,在原有线路上扩容5根线(2对差分信号1个地线),而且还是可以兼容USB2.0.
大家还记得A&B型是为了防止插错吗?一般A用在主机端,B用在外围设备中。USB3.0A可以完全向下兼容2.0但是USB3.0B是不可对接USB2.0母端的。
最具竞争力的产品来自于INTEL开发的thunderbolt连接器,目前已经广泛运用到APPLE的产品中,传输速率10Gb/s左右,目前已经有部分高端存储器采用这种方案。
为了让大家都享有10G的传输速率,USB论坛在2013年7月发布了USB3.1。还是采用标准A和Micro-B两种形式,900mA,5V,都没有变化。它解决了人们对普通USB产品有配接方向性的抱怨。
INTEL最近发布了Thunderbolt3.0产品,会兼容USB-C产品形式,并将拥有20Gb/s,将来目标是40Gb/s的产品。
有迹象表明Type C将替换目前所有其他的USB家庭成员的形式,今后3年多时间里,它将跟随人们的脚步,在高速率、用户友好性、低产品高度、耐用性等方面迅速宽展用户群体。
Product Description
A. Interface type: Leaf spring on beam
B. Common trade names: SuperSpeed USB 3.0 / 3.1 SuperSpeed +, USB Type C, Gigalight
C. Most common packaging level: Level 6
D. Contact centerlines: 1.0mm
E. Wire or PCB termination method: Crimp/solder/weld on wire, through-hole, surface mount
on PCB.
F. Applicable industry standards: USB 3.0, 3.1, Type C
G. Competitive differentiating features: Price, production proximity to point of use, plating
quality.
Performance Ratings
A. Contact current rating: 0.5 amps ( Scalable up to 5 amps per connector)
B. Voltage rating: 30 volts, with some variation among suppliers
C. Available # of contact positions: 9 pin on 3.0 and 3.1, 24 on Type C
D. Rated mating cycles: Standard series = 1500, High durability series = 5,000, Type C = 10,000
E. Impedance: Differential impedance =75-105 ohms, +/- 15 Ohms (Average = 90 ohms)
F. High-speed bandwidth: to 10 Gb/s maximum
Product Market Data
Industry Segments / Typical Applications: Telecom, computer, consumer and industrial I/O.
Major Suppliers
Amphenol, FCI Electronics, Foxconn, Hirose, JAE, JST, Molex, Samtec, TE Connectivity 查看全部
USB(通用串行总线 )I/O 确实是名至实归,从20年前的标准制定大会开始这个产品就逐渐成为电子产品的当之无愧的霸主,无所不在。今天我们就来小叙一下USB的发展史,让我们从USB1.0开始吧。
USB1.0其实是用来给一开始的计算机外设准备的标准,但是的传输速率只有12Mb/s,紧凑的4路信号通道,可以支持热插拔功能,简单的试配软件即可轻松连接外加设备到主机上。连接器有两种不同的壳体,即A&B型。主机可以最多连接127个外设产品附件,很小的插入力可以保证连接器在窄小的空间仍可以使用。5v的低电压也可以驱动外接设备,尤其是紧凑的外形和耐用性使其在通用计算机外设和消费电子产品中得以广泛运用。
2001年,为了提高传输速率,USB2.0的诞生了!这也是印证了USB是一个拥有自我发展与完善基因的产品线。USB2.0可以向下兼容USB1.0,所用的界面都是一致的,速率提高到了480Mb/s. 但是运用范围已经远远超过了电脑外设的范畴,拓展到了游戏、存储、音视频产品,GPS,智能电话,数码影像等等领域。紧接着随着随身携带设备的普及,Mini 和Micro USB标准也就应运而是生,并且在事实上已经成为了随身携带设备接口的行业标准。
随着更高速率及大容量视频文件的传播,人们需要更快速度的接口产品这样以来就在2008年底,诞生了USB3.0.它的理论传输速度已经到达5Gb/s, 相当于10倍USB2.0的传输速率。在其他方面3.0也比2.0的要好,比如它的功耗只有后者的不到一半,这一特性对当今的移动设备市场是个很大的推动。传输电流从500毫安涨到900毫安,在原有线路上扩容5根线(2对差分信号1个地线),而且还是可以兼容USB2.0.
大家还记得A&B型是为了防止插错吗?一般A用在主机端,B用在外围设备中。USB3.0A可以完全向下兼容2.0但是USB3.0B是不可对接USB2.0母端的。
最具竞争力的产品来自于INTEL开发的thunderbolt连接器,目前已经广泛运用到APPLE的产品中,传输速率10Gb/s左右,目前已经有部分高端存储器采用这种方案。
为了让大家都享有10G的传输速率,USB论坛在2013年7月发布了USB3.1。还是采用标准A和Micro-B两种形式,900mA,5V,都没有变化。它解决了人们对普通USB产品有配接方向性的抱怨。
INTEL最近发布了Thunderbolt3.0产品,会兼容USB-C产品形式,并将拥有20Gb/s,将来目标是40Gb/s的产品。
有迹象表明Type C将替换目前所有其他的USB家庭成员的形式,今后3年多时间里,它将跟随人们的脚步,在高速率、用户友好性、低产品高度、耐用性等方面迅速宽展用户群体。
Product Description
A. Interface type: Leaf spring on beam
B. Common trade names: SuperSpeed USB 3.0 / 3.1 SuperSpeed +, USB Type C, Gigalight
C. Most common packaging level: Level 6
D. Contact centerlines: 1.0mm
E. Wire or PCB termination method: Crimp/solder/weld on wire, through-hole, surface mount
on PCB.
F. Applicable industry standards: USB 3.0, 3.1, Type C
G. Competitive differentiating features: Price, production proximity to point of use, plating
quality.
Performance Ratings
A. Contact current rating: 0.5 amps ( Scalable up to 5 amps per connector)
B. Voltage rating: 30 volts, with some variation among suppliers
C. Available # of contact positions: 9 pin on 3.0 and 3.1, 24 on Type C
D. Rated mating cycles: Standard series = 1500, High durability series = 5,000, Type C = 10,000
E. Impedance: Differential impedance =75-105 ohms, +/- 15 Ohms (Average = 90 ohms)
F. High-speed bandwidth: to 10 Gb/s maximum
Product Market Data
Industry Segments / Typical Applications: Telecom, computer, consumer and industrial I/O.
Major Suppliers
Amphenol, FCI Electronics, Foxconn, Hirose, JAE, JST, Molex, Samtec, TE Connectivity
USB1.0其实是用来给一开始的计算机外设准备的标准,但是的传输速率只有12Mb/s,紧凑的4路信号通道,可以支持热插拔功能,简单的试配软件即可轻松连接外加设备到主机上。连接器有两种不同的壳体,即A&B型。主机可以最多连接127个外设产品附件,很小的插入力可以保证连接器在窄小的空间仍可以使用。5v的低电压也可以驱动外接设备,尤其是紧凑的外形和耐用性使其在通用计算机外设和消费电子产品中得以广泛运用。
2001年,为了提高传输速率,USB2.0的诞生了!这也是印证了USB是一个拥有自我发展与完善基因的产品线。USB2.0可以向下兼容USB1.0,所用的界面都是一致的,速率提高到了480Mb/s. 但是运用范围已经远远超过了电脑外设的范畴,拓展到了游戏、存储、音视频产品,GPS,智能电话,数码影像等等领域。紧接着随着随身携带设备的普及,Mini 和Micro USB标准也就应运而是生,并且在事实上已经成为了随身携带设备接口的行业标准。
随着更高速率及大容量视频文件的传播,人们需要更快速度的接口产品这样以来就在2008年底,诞生了USB3.0.它的理论传输速度已经到达5Gb/s, 相当于10倍USB2.0的传输速率。在其他方面3.0也比2.0的要好,比如它的功耗只有后者的不到一半,这一特性对当今的移动设备市场是个很大的推动。传输电流从500毫安涨到900毫安,在原有线路上扩容5根线(2对差分信号1个地线),而且还是可以兼容USB2.0.
大家还记得A&B型是为了防止插错吗?一般A用在主机端,B用在外围设备中。USB3.0A可以完全向下兼容2.0但是USB3.0B是不可对接USB2.0母端的。
最具竞争力的产品来自于INTEL开发的thunderbolt连接器,目前已经广泛运用到APPLE的产品中,传输速率10Gb/s左右,目前已经有部分高端存储器采用这种方案。
为了让大家都享有10G的传输速率,USB论坛在2013年7月发布了USB3.1。还是采用标准A和Micro-B两种形式,900mA,5V,都没有变化。它解决了人们对普通USB产品有配接方向性的抱怨。
INTEL最近发布了Thunderbolt3.0产品,会兼容USB-C产品形式,并将拥有20Gb/s,将来目标是40Gb/s的产品。
有迹象表明Type C将替换目前所有其他的USB家庭成员的形式,今后3年多时间里,它将跟随人们的脚步,在高速率、用户友好性、低产品高度、耐用性等方面迅速宽展用户群体。
Product Description
A. Interface type: Leaf spring on beam
B. Common trade names: SuperSpeed USB 3.0 / 3.1 SuperSpeed +, USB Type C, Gigalight
C. Most common packaging level: Level 6
D. Contact centerlines: 1.0mm
E. Wire or PCB termination method: Crimp/solder/weld on wire, through-hole, surface mount
on PCB.
F. Applicable industry standards: USB 3.0, 3.1, Type C
G. Competitive differentiating features: Price, production proximity to point of use, plating
quality.
Performance Ratings
A. Contact current rating: 0.5 amps ( Scalable up to 5 amps per connector)
B. Voltage rating: 30 volts, with some variation among suppliers
C. Available # of contact positions: 9 pin on 3.0 and 3.1, 24 on Type C
D. Rated mating cycles: Standard series = 1500, High durability series = 5,000, Type C = 10,000
E. Impedance: Differential impedance =75-105 ohms, +/- 15 Ohms (Average = 90 ohms)
F. High-speed bandwidth: to 10 Gb/s maximum
Product Market Data
Industry Segments / Typical Applications: Telecom, computer, consumer and industrial I/O.
Major Suppliers
Amphenol, FCI Electronics, Foxconn, Hirose, JAE, JST, Molex, Samtec, TE Connectivity
what kind of material offers reliability and safety in next-generation USB-C connectors?
技术分享 • Happy 发表了文章 • 0 个评论 • 2246 次浏览 • 2016-04-24 08:51
The Type-C connector supports the new SuperSpeed USB 3.1 format, which offers data-transfer rates as high as 10Gb/s or roughly double the speed of current USB 3.0 versions. It’s still backward-compatible with all the USB 2.0 formats (LS, FS, and HS), so even legacy systems will be able to take advantage of the new connector when it’s designed into dongles.
As a result, the USB-C connector will become the standard design from 2017 on, as decreed by USB Implementers Forum (USB IF), the non-profit corporation founded by the group of companies that developed the original Universal Serial Bus specification.
The USB Power Delivery specification is also being updated to enable USB PD to support the USB-C Cable and Connector specification, for charging up to 100W. USB-C specifications are contained within the overall USB 3.1 standard that also covers data transmission rates.
The various pins on the USB-C connector are spaced with a pitch of just 0.5mm, compared with 0.65mm on a USB 3.0 Micro B connector and 2.0mm on a USB Type A connector. The thinnest insulating wall has been reduced from 1.84mm on the USB Type A to a miniscule 0.12mm on a USB-C connector. It is difficult to successfully design and consistently mold parts with such thin walls and maintain the necessary mechanical and electrical properties.
Many component producers have begun developments in new USB-C connector designs using liquid crystal polymers (LCPs). Traditionally, LCPs are often favored in thin-wall electronics because of their excellent flow properties and because prices of some commodity grades are relatively low, sometimes under $10/kg; LCPs are well-known by USB connector makers, since they have been the favored polymer in previous generations of USB.
But in many cases, USB-C connectors are likely to fail stringent tests regarding their electrical properties, especially resistance to surface tracking, expressed as the Comparative Tracking Index (CTI), and also mechanical properties.
The CTI of the plastic that acts as an insulator as well as a mechanical anchor around the conductors is more than ever a key for product reliability with the USB-C connector. If the insulator does not have sufficiently high CTI, there is a risk that at some point a short circuit will result, damaging the device and possibly even starting a fire. This is not fearmongering – there are various reports of mobile devices catching fire during charging.
There are essentially three routes to reduce risk of fire hazard caused by tracking:
Increasing the creeping distance (defined by conductor pitch and insulator wall thickness)
Lowering the level of environmental pollution (dust, sweat, etc.)
Using an insulation material with a higher CTI
The creeping distance in the connectors is pre-defined and cannot be modified. Reduction of the level of environmental pollution at connector level can only be done by additional sealing, which adds to the cost of the device, so using a material for the insulator with as high a CTI as possible is the most viable solution to increase end-product safety.
Solutions more appropriate than those possible with LCPs or halogen-containing PAs (PA9T or PA6T) can be found with high-performance halogen-free polyamides, such as PA46 and PA4T.
High-performance polyamides 46 and 4T offer the best balance of mechanical and electrical properties and precision molding. Polyamides 46 and 4T already have been approved by several global producers for use in the next generation of USB-C connectors. They answer the need for improved levels of safety and reliability. PA46 and PA4T both have high CTIs of PLC class 0, well above the recommended 400V. They maintain this high performance for twice as long as alternative materials such as LCPs, most of which have CTIs under 400V.
An ideal solution, therefore, is to use PA4T for the first insert molding stage; this has a melting point of 325°C. The second insert molding stage can then be done with PA46, which has a melting point of 295°C.
The most difficult part of a USB-C connector to produce is the plug front housing. Very thin ribs require high flow and tough material, and there is a weld line on the front side, which mandates a material with high welding-line strength.
Material requirements listed below can all be fulfilled by high-performance polyamides PA46 and PA4T:
High flow for 0.12mm wall thickness design
High levels of stiffness, toughness, and welding line strength
High-wear friction strength and high retention force (10,000 times mating/unmating durability test)
Good process window
UL 94-V0 and high CTI (400V) to support USB PD 1.0 and 2.0 standards (up to 5A and 20V)
Good colorability to support consumer electronics market needs
Lead-free reflow soldering
Compatible with high-speed signal transfer up to 10Gb/s
[More details please visit www.dsm.com] 查看全部
As a result, the USB-C connector will become the standard design from 2017 on, as decreed by USB Implementers Forum (USB IF), the non-profit corporation founded by the group of companies that developed the original Universal Serial Bus specification.
The USB Power Delivery specification is also being updated to enable USB PD to support the USB-C Cable and Connector specification, for charging up to 100W. USB-C specifications are contained within the overall USB 3.1 standard that also covers data transmission rates.
The various pins on the USB-C connector are spaced with a pitch of just 0.5mm, compared with 0.65mm on a USB 3.0 Micro B connector and 2.0mm on a USB Type A connector. The thinnest insulating wall has been reduced from 1.84mm on the USB Type A to a miniscule 0.12mm on a USB-C connector. It is difficult to successfully design and consistently mold parts with such thin walls and maintain the necessary mechanical and electrical properties.
Many component producers have begun developments in new USB-C connector designs using liquid crystal polymers (LCPs). Traditionally, LCPs are often favored in thin-wall electronics because of their excellent flow properties and because prices of some commodity grades are relatively low, sometimes under $10/kg; LCPs are well-known by USB connector makers, since they have been the favored polymer in previous generations of USB.
But in many cases, USB-C connectors are likely to fail stringent tests regarding their electrical properties, especially resistance to surface tracking, expressed as the Comparative Tracking Index (CTI), and also mechanical properties.
The CTI of the plastic that acts as an insulator as well as a mechanical anchor around the conductors is more than ever a key for product reliability with the USB-C connector. If the insulator does not have sufficiently high CTI, there is a risk that at some point a short circuit will result, damaging the device and possibly even starting a fire. This is not fearmongering – there are various reports of mobile devices catching fire during charging.
There are essentially three routes to reduce risk of fire hazard caused by tracking:
Increasing the creeping distance (defined by conductor pitch and insulator wall thickness)
Lowering the level of environmental pollution (dust, sweat, etc.)
Using an insulation material with a higher CTI
The creeping distance in the connectors is pre-defined and cannot be modified. Reduction of the level of environmental pollution at connector level can only be done by additional sealing, which adds to the cost of the device, so using a material for the insulator with as high a CTI as possible is the most viable solution to increase end-product safety.
Solutions more appropriate than those possible with LCPs or halogen-containing PAs (PA9T or PA6T) can be found with high-performance halogen-free polyamides, such as PA46 and PA4T.
High-performance polyamides 46 and 4T offer the best balance of mechanical and electrical properties and precision molding. Polyamides 46 and 4T already have been approved by several global producers for use in the next generation of USB-C connectors. They answer the need for improved levels of safety and reliability. PA46 and PA4T both have high CTIs of PLC class 0, well above the recommended 400V. They maintain this high performance for twice as long as alternative materials such as LCPs, most of which have CTIs under 400V.
An ideal solution, therefore, is to use PA4T for the first insert molding stage; this has a melting point of 325°C. The second insert molding stage can then be done with PA46, which has a melting point of 295°C.
The most difficult part of a USB-C connector to produce is the plug front housing. Very thin ribs require high flow and tough material, and there is a weld line on the front side, which mandates a material with high welding-line strength.
Material requirements listed below can all be fulfilled by high-performance polyamides PA46 and PA4T:
High flow for 0.12mm wall thickness design
High levels of stiffness, toughness, and welding line strength
High-wear friction strength and high retention force (10,000 times mating/unmating durability test)
Good process window
UL 94-V0 and high CTI (400V) to support USB PD 1.0 and 2.0 standards (up to 5A and 20V)
Good colorability to support consumer electronics market needs
Lead-free reflow soldering
Compatible with high-speed signal transfer up to 10Gb/s
[More details please visit www.dsm.com] 查看全部
The Type-C connector supports the new SuperSpeed USB 3.1 format, which offers data-transfer rates as high as 10Gb/s or roughly double the speed of current USB 3.0 versions. It’s still backward-compatible with all the USB 2.0 formats (LS, FS, and HS), so even legacy systems will be able to take advantage of the new connector when it’s designed into dongles.
As a result, the USB-C connector will become the standard design from 2017 on, as decreed by USB Implementers Forum (USB IF), the non-profit corporation founded by the group of companies that developed the original Universal Serial Bus specification.
The USB Power Delivery specification is also being updated to enable USB PD to support the USB-C Cable and Connector specification, for charging up to 100W. USB-C specifications are contained within the overall USB 3.1 standard that also covers data transmission rates.
The various pins on the USB-C connector are spaced with a pitch of just 0.5mm, compared with 0.65mm on a USB 3.0 Micro B connector and 2.0mm on a USB Type A connector. The thinnest insulating wall has been reduced from 1.84mm on the USB Type A to a miniscule 0.12mm on a USB-C connector. It is difficult to successfully design and consistently mold parts with such thin walls and maintain the necessary mechanical and electrical properties.
Many component producers have begun developments in new USB-C connector designs using liquid crystal polymers (LCPs). Traditionally, LCPs are often favored in thin-wall electronics because of their excellent flow properties and because prices of some commodity grades are relatively low, sometimes under $10/kg; LCPs are well-known by USB connector makers, since they have been the favored polymer in previous generations of USB.
But in many cases, USB-C connectors are likely to fail stringent tests regarding their electrical properties, especially resistance to surface tracking, expressed as the Comparative Tracking Index (CTI), and also mechanical properties.
The CTI of the plastic that acts as an insulator as well as a mechanical anchor around the conductors is more than ever a key for product reliability with the USB-C connector. If the insulator does not have sufficiently high CTI, there is a risk that at some point a short circuit will result, damaging the device and possibly even starting a fire. This is not fearmongering – there are various reports of mobile devices catching fire during charging.
There are essentially three routes to reduce risk of fire hazard caused by tracking:
Increasing the creeping distance (defined by conductor pitch and insulator wall thickness)
Lowering the level of environmental pollution (dust, sweat, etc.)
Using an insulation material with a higher CTI
The creeping distance in the connectors is pre-defined and cannot be modified. Reduction of the level of environmental pollution at connector level can only be done by additional sealing, which adds to the cost of the device, so using a material for the insulator with as high a CTI as possible is the most viable solution to increase end-product safety.
Solutions more appropriate than those possible with LCPs or halogen-containing PAs (PA9T or PA6T) can be found with high-performance halogen-free polyamides, such as PA46 and PA4T.
High-performance polyamides 46 and 4T offer the best balance of mechanical and electrical properties and precision molding. Polyamides 46 and 4T already have been approved by several global producers for use in the next generation of USB-C connectors. They answer the need for improved levels of safety and reliability. PA46 and PA4T both have high CTIs of PLC class 0, well above the recommended 400V. They maintain this high performance for twice as long as alternative materials such as LCPs, most of which have CTIs under 400V.
An ideal solution, therefore, is to use PA4T for the first insert molding stage; this has a melting point of 325°C. The second insert molding stage can then be done with PA46, which has a melting point of 295°C.
The most difficult part of a USB-C connector to produce is the plug front housing. Very thin ribs require high flow and tough material, and there is a weld line on the front side, which mandates a material with high welding-line strength.
Material requirements listed below can all be fulfilled by high-performance polyamides PA46 and PA4T:
High flow for 0.12mm wall thickness design
High levels of stiffness, toughness, and welding line strength
High-wear friction strength and high retention force (10,000 times mating/unmating durability test)
Good process window
UL 94-V0 and high CTI (400V) to support USB PD 1.0 and 2.0 standards (up to 5A and 20V)
Good colorability to support consumer electronics market needs
Lead-free reflow soldering
Compatible with high-speed signal transfer up to 10Gb/s
[More details please visit www.dsm.com]
As a result, the USB-C connector will become the standard design from 2017 on, as decreed by USB Implementers Forum (USB IF), the non-profit corporation founded by the group of companies that developed the original Universal Serial Bus specification.
The USB Power Delivery specification is also being updated to enable USB PD to support the USB-C Cable and Connector specification, for charging up to 100W. USB-C specifications are contained within the overall USB 3.1 standard that also covers data transmission rates.
The various pins on the USB-C connector are spaced with a pitch of just 0.5mm, compared with 0.65mm on a USB 3.0 Micro B connector and 2.0mm on a USB Type A connector. The thinnest insulating wall has been reduced from 1.84mm on the USB Type A to a miniscule 0.12mm on a USB-C connector. It is difficult to successfully design and consistently mold parts with such thin walls and maintain the necessary mechanical and electrical properties.
Many component producers have begun developments in new USB-C connector designs using liquid crystal polymers (LCPs). Traditionally, LCPs are often favored in thin-wall electronics because of their excellent flow properties and because prices of some commodity grades are relatively low, sometimes under $10/kg; LCPs are well-known by USB connector makers, since they have been the favored polymer in previous generations of USB.
But in many cases, USB-C connectors are likely to fail stringent tests regarding their electrical properties, especially resistance to surface tracking, expressed as the Comparative Tracking Index (CTI), and also mechanical properties.
The CTI of the plastic that acts as an insulator as well as a mechanical anchor around the conductors is more than ever a key for product reliability with the USB-C connector. If the insulator does not have sufficiently high CTI, there is a risk that at some point a short circuit will result, damaging the device and possibly even starting a fire. This is not fearmongering – there are various reports of mobile devices catching fire during charging.
There are essentially three routes to reduce risk of fire hazard caused by tracking:
Increasing the creeping distance (defined by conductor pitch and insulator wall thickness)
Lowering the level of environmental pollution (dust, sweat, etc.)
Using an insulation material with a higher CTI
The creeping distance in the connectors is pre-defined and cannot be modified. Reduction of the level of environmental pollution at connector level can only be done by additional sealing, which adds to the cost of the device, so using a material for the insulator with as high a CTI as possible is the most viable solution to increase end-product safety.
Solutions more appropriate than those possible with LCPs or halogen-containing PAs (PA9T or PA6T) can be found with high-performance halogen-free polyamides, such as PA46 and PA4T.
High-performance polyamides 46 and 4T offer the best balance of mechanical and electrical properties and precision molding. Polyamides 46 and 4T already have been approved by several global producers for use in the next generation of USB-C connectors. They answer the need for improved levels of safety and reliability. PA46 and PA4T both have high CTIs of PLC class 0, well above the recommended 400V. They maintain this high performance for twice as long as alternative materials such as LCPs, most of which have CTIs under 400V.
An ideal solution, therefore, is to use PA4T for the first insert molding stage; this has a melting point of 325°C. The second insert molding stage can then be done with PA46, which has a melting point of 295°C.
The most difficult part of a USB-C connector to produce is the plug front housing. Very thin ribs require high flow and tough material, and there is a weld line on the front side, which mandates a material with high welding-line strength.
Material requirements listed below can all be fulfilled by high-performance polyamides PA46 and PA4T:
High flow for 0.12mm wall thickness design
High levels of stiffness, toughness, and welding line strength
High-wear friction strength and high retention force (10,000 times mating/unmating durability test)
Good process window
UL 94-V0 and high CTI (400V) to support USB PD 1.0 and 2.0 standards (up to 5A and 20V)
Good colorability to support consumer electronics market needs
Lead-free reflow soldering
Compatible with high-speed signal transfer up to 10Gb/s
[More details please visit www.dsm.com]
HDMI 发布 USB Type-C 连接器的替代模式
技术分享 • atangge 发表了文章 • 0 个评论 • 2077 次浏览 • 2016-09-06 11:41
实现将本机 HDMI 信号传送至无适配器或硬件保护装置的4K/超高清显示器
北京--(美国商业资讯)--HDMI特许公司今日发布HDMI创立者针对USB Type-C™ 规范开发的HDMI 替代模式。这使具有HDMI功能的源设备可以利用USB Type-C连接器直接连接到具有HDMI功能的显示器,无需繁琐的协议及连接器适配器或硬件保护装置,通过单根线缆传输本机的HDMI信号。
该发布实现了当下最流行连接解决方案中两大方案的协作。USB Type-C 连接器外形小巧、正反都能插,且具有多种用途,广泛应用于智能手机、平板电脑和个人电脑产品中。HDMI是领先的显示器接口,已安装在数十亿台显示器上。预计2016年具有HDMI功能的显示设备发货量将达到近 2.9亿台,其中包括投影仪、显示器和100%的平板电视机。
HDMI替代模式将全面支持HDMI 1.4b功能,例如:高达4K的分辨率、音频回传通道(ARC)、3D、HDMI以太网通道和消费类电子设备控制(CEC)。HDMI线缆将利用源端的USB Type-C连接器与显示器端的任何HDMI连接器。其他替代模式显示技术需要各种适配器或硬件保护装置才能连接到 HDMI显示器,而使用HDMI替代模式时,通过单根USB Type-C至HDMI线缆便可轻松实现连接。
“USB Type-C连接器在手机和个人电脑市场发展迅猛,”HDMI特许公司总裁Rob Tobias先生说道,“消费者期望能够通过一根USB Type-C至HDMI线缆轻松将这些设备连接到显示器,并使用到本机HDMI的性能与功能。此规范将导致更多源设备采用HDMI。HDMI致力于不断发展,以满足全球1600多家生产HDMI产品的企业需求,HDMI设备的出货量已达到了近60亿台,并在持续增长。”
“许多类型的消费类电子产品需要采用单个解决方案来传输音频、视频、数据与电源,USB Type-C正是此类产品的首选连接器,”USB-IF总裁兼首席运营官Jeff Ravencraft表示,“使用USB Type-C轻松将设备连接到普遍具有HDMI功能的电视机,为消费者带来极大好处。我们还与HDMI 特许公司协作,确保当USB Type-C设备支持HDMI替代模式时,消费者能够识别出来。”
所有HDMI采用者可以访问www.hdmi.org,了解USB Type-C上HDMI 1.4b替代模式规范。
有关 USB Implementers Forum (USB-IF) 或 USB Type-C 规范的更多信息,请访问 www.usb.org。
关于HDMI特许公司(HDMI Licensing, LLC)
HDMI特许公司是授权许可HDMI规范的代理机构。HDMI规范将未经压缩的高清视频、多声道音频和数据整合到同一个数字接口中,通过单根线缆提供极为清晰的数字影音质量。HDMI特许公司提供营销、推广、授权许可和管理服务,同时还向采纳者、零售商和消费者宣传普及HDMI规范的优势。HDMI的创立者包括日立Maxell有限公司、皇家菲利浦电子有限公司、莱迪思半导体、松下公司、索尼公司、特艺集团和东芝公司。HDMI特许公司是莱迪斯半导体的全资子公司。如需了解更多HDMI规范的信息,请访问 www.hdmi.org。
以下为HDMI特许公司在美国以及其他国家所使用的商标或注册商标—HDMI、HDMI高清晰度多媒体接口(HDMI High-Definition Multimedia Interface)、高级HDMI线缆认证计划(Premium HDMI Cable Certification Program)、高级高速HDMI线缆(Premium High Speed HDMI Cable)、支持以太网络连接的高级高速HDMI线缆(Premium High Speed HDMI Cable with Ethernet)、高级HDMI线缆标识(the Premium HDMI Cable label)、高级HDMI线缆徽标(Premium HDMI Cable Logo)和HDMI徽标(the HDMI Logo)。
USB Type-C™ 和 USB-C™ 是 USB Implementers Forum 的商标。
在 businesswire.com 上查看源版本新闻稿: http://www.businesswire.com/ne ... h-CN/ 查看全部
北京--(美国商业资讯)--HDMI特许公司今日发布HDMI创立者针对USB Type-C™ 规范开发的HDMI 替代模式。这使具有HDMI功能的源设备可以利用USB Type-C连接器直接连接到具有HDMI功能的显示器,无需繁琐的协议及连接器适配器或硬件保护装置,通过单根线缆传输本机的HDMI信号。
该发布实现了当下最流行连接解决方案中两大方案的协作。USB Type-C 连接器外形小巧、正反都能插,且具有多种用途,广泛应用于智能手机、平板电脑和个人电脑产品中。HDMI是领先的显示器接口,已安装在数十亿台显示器上。预计2016年具有HDMI功能的显示设备发货量将达到近 2.9亿台,其中包括投影仪、显示器和100%的平板电视机。
HDMI替代模式将全面支持HDMI 1.4b功能,例如:高达4K的分辨率、音频回传通道(ARC)、3D、HDMI以太网通道和消费类电子设备控制(CEC)。HDMI线缆将利用源端的USB Type-C连接器与显示器端的任何HDMI连接器。其他替代模式显示技术需要各种适配器或硬件保护装置才能连接到 HDMI显示器,而使用HDMI替代模式时,通过单根USB Type-C至HDMI线缆便可轻松实现连接。
“USB Type-C连接器在手机和个人电脑市场发展迅猛,”HDMI特许公司总裁Rob Tobias先生说道,“消费者期望能够通过一根USB Type-C至HDMI线缆轻松将这些设备连接到显示器,并使用到本机HDMI的性能与功能。此规范将导致更多源设备采用HDMI。HDMI致力于不断发展,以满足全球1600多家生产HDMI产品的企业需求,HDMI设备的出货量已达到了近60亿台,并在持续增长。”
“许多类型的消费类电子产品需要采用单个解决方案来传输音频、视频、数据与电源,USB Type-C正是此类产品的首选连接器,”USB-IF总裁兼首席运营官Jeff Ravencraft表示,“使用USB Type-C轻松将设备连接到普遍具有HDMI功能的电视机,为消费者带来极大好处。我们还与HDMI 特许公司协作,确保当USB Type-C设备支持HDMI替代模式时,消费者能够识别出来。”
所有HDMI采用者可以访问www.hdmi.org,了解USB Type-C上HDMI 1.4b替代模式规范。
有关 USB Implementers Forum (USB-IF) 或 USB Type-C 规范的更多信息,请访问 www.usb.org。
关于HDMI特许公司(HDMI Licensing, LLC)
HDMI特许公司是授权许可HDMI规范的代理机构。HDMI规范将未经压缩的高清视频、多声道音频和数据整合到同一个数字接口中,通过单根线缆提供极为清晰的数字影音质量。HDMI特许公司提供营销、推广、授权许可和管理服务,同时还向采纳者、零售商和消费者宣传普及HDMI规范的优势。HDMI的创立者包括日立Maxell有限公司、皇家菲利浦电子有限公司、莱迪思半导体、松下公司、索尼公司、特艺集团和东芝公司。HDMI特许公司是莱迪斯半导体的全资子公司。如需了解更多HDMI规范的信息,请访问 www.hdmi.org。
以下为HDMI特许公司在美国以及其他国家所使用的商标或注册商标—HDMI、HDMI高清晰度多媒体接口(HDMI High-Definition Multimedia Interface)、高级HDMI线缆认证计划(Premium HDMI Cable Certification Program)、高级高速HDMI线缆(Premium High Speed HDMI Cable)、支持以太网络连接的高级高速HDMI线缆(Premium High Speed HDMI Cable with Ethernet)、高级HDMI线缆标识(the Premium HDMI Cable label)、高级HDMI线缆徽标(Premium HDMI Cable Logo)和HDMI徽标(the HDMI Logo)。
USB Type-C™ 和 USB-C™ 是 USB Implementers Forum 的商标。
在 businesswire.com 上查看源版本新闻稿: http://www.businesswire.com/ne ... h-CN/ 查看全部
实现将本机 HDMI 信号传送至无适配器或硬件保护装置的4K/超高清显示器
北京--(美国商业资讯)--HDMI特许公司今日发布HDMI创立者针对USB Type-C™ 规范开发的HDMI 替代模式。这使具有HDMI功能的源设备可以利用USB Type-C连接器直接连接到具有HDMI功能的显示器,无需繁琐的协议及连接器适配器或硬件保护装置,通过单根线缆传输本机的HDMI信号。
该发布实现了当下最流行连接解决方案中两大方案的协作。USB Type-C 连接器外形小巧、正反都能插,且具有多种用途,广泛应用于智能手机、平板电脑和个人电脑产品中。HDMI是领先的显示器接口,已安装在数十亿台显示器上。预计2016年具有HDMI功能的显示设备发货量将达到近 2.9亿台,其中包括投影仪、显示器和100%的平板电视机。
HDMI替代模式将全面支持HDMI 1.4b功能,例如:高达4K的分辨率、音频回传通道(ARC)、3D、HDMI以太网通道和消费类电子设备控制(CEC)。HDMI线缆将利用源端的USB Type-C连接器与显示器端的任何HDMI连接器。其他替代模式显示技术需要各种适配器或硬件保护装置才能连接到 HDMI显示器,而使用HDMI替代模式时,通过单根USB Type-C至HDMI线缆便可轻松实现连接。
“USB Type-C连接器在手机和个人电脑市场发展迅猛,”HDMI特许公司总裁Rob Tobias先生说道,“消费者期望能够通过一根USB Type-C至HDMI线缆轻松将这些设备连接到显示器,并使用到本机HDMI的性能与功能。此规范将导致更多源设备采用HDMI。HDMI致力于不断发展,以满足全球1600多家生产HDMI产品的企业需求,HDMI设备的出货量已达到了近60亿台,并在持续增长。”
“许多类型的消费类电子产品需要采用单个解决方案来传输音频、视频、数据与电源,USB Type-C正是此类产品的首选连接器,”USB-IF总裁兼首席运营官Jeff Ravencraft表示,“使用USB Type-C轻松将设备连接到普遍具有HDMI功能的电视机,为消费者带来极大好处。我们还与HDMI 特许公司协作,确保当USB Type-C设备支持HDMI替代模式时,消费者能够识别出来。”
所有HDMI采用者可以访问www.hdmi.org,了解USB Type-C上HDMI 1.4b替代模式规范。
有关 USB Implementers Forum (USB-IF) 或 USB Type-C 规范的更多信息,请访问 www.usb.org。
关于HDMI特许公司(HDMI Licensing, LLC)
HDMI特许公司是授权许可HDMI规范的代理机构。HDMI规范将未经压缩的高清视频、多声道音频和数据整合到同一个数字接口中,通过单根线缆提供极为清晰的数字影音质量。HDMI特许公司提供营销、推广、授权许可和管理服务,同时还向采纳者、零售商和消费者宣传普及HDMI规范的优势。HDMI的创立者包括日立Maxell有限公司、皇家菲利浦电子有限公司、莱迪思半导体、松下公司、索尼公司、特艺集团和东芝公司。HDMI特许公司是莱迪斯半导体的全资子公司。如需了解更多HDMI规范的信息,请访问 www.hdmi.org。
以下为HDMI特许公司在美国以及其他国家所使用的商标或注册商标—HDMI、HDMI高清晰度多媒体接口(HDMI High-Definition Multimedia Interface)、高级HDMI线缆认证计划(Premium HDMI Cable Certification Program)、高级高速HDMI线缆(Premium High Speed HDMI Cable)、支持以太网络连接的高级高速HDMI线缆(Premium High Speed HDMI Cable with Ethernet)、高级HDMI线缆标识(the Premium HDMI Cable label)、高级HDMI线缆徽标(Premium HDMI Cable Logo)和HDMI徽标(the HDMI Logo)。
USB Type-C™ 和 USB-C™ 是 USB Implementers Forum 的商标。
在 businesswire.com 上查看源版本新闻稿: http://www.businesswire.com/ne ... h-CN/
北京--(美国商业资讯)--HDMI特许公司今日发布HDMI创立者针对USB Type-C™ 规范开发的HDMI 替代模式。这使具有HDMI功能的源设备可以利用USB Type-C连接器直接连接到具有HDMI功能的显示器,无需繁琐的协议及连接器适配器或硬件保护装置,通过单根线缆传输本机的HDMI信号。
该发布实现了当下最流行连接解决方案中两大方案的协作。USB Type-C 连接器外形小巧、正反都能插,且具有多种用途,广泛应用于智能手机、平板电脑和个人电脑产品中。HDMI是领先的显示器接口,已安装在数十亿台显示器上。预计2016年具有HDMI功能的显示设备发货量将达到近 2.9亿台,其中包括投影仪、显示器和100%的平板电视机。
HDMI替代模式将全面支持HDMI 1.4b功能,例如:高达4K的分辨率、音频回传通道(ARC)、3D、HDMI以太网通道和消费类电子设备控制(CEC)。HDMI线缆将利用源端的USB Type-C连接器与显示器端的任何HDMI连接器。其他替代模式显示技术需要各种适配器或硬件保护装置才能连接到 HDMI显示器,而使用HDMI替代模式时,通过单根USB Type-C至HDMI线缆便可轻松实现连接。
“USB Type-C连接器在手机和个人电脑市场发展迅猛,”HDMI特许公司总裁Rob Tobias先生说道,“消费者期望能够通过一根USB Type-C至HDMI线缆轻松将这些设备连接到显示器,并使用到本机HDMI的性能与功能。此规范将导致更多源设备采用HDMI。HDMI致力于不断发展,以满足全球1600多家生产HDMI产品的企业需求,HDMI设备的出货量已达到了近60亿台,并在持续增长。”
“许多类型的消费类电子产品需要采用单个解决方案来传输音频、视频、数据与电源,USB Type-C正是此类产品的首选连接器,”USB-IF总裁兼首席运营官Jeff Ravencraft表示,“使用USB Type-C轻松将设备连接到普遍具有HDMI功能的电视机,为消费者带来极大好处。我们还与HDMI 特许公司协作,确保当USB Type-C设备支持HDMI替代模式时,消费者能够识别出来。”
所有HDMI采用者可以访问www.hdmi.org,了解USB Type-C上HDMI 1.4b替代模式规范。
有关 USB Implementers Forum (USB-IF) 或 USB Type-C 规范的更多信息,请访问 www.usb.org。
关于HDMI特许公司(HDMI Licensing, LLC)
HDMI特许公司是授权许可HDMI规范的代理机构。HDMI规范将未经压缩的高清视频、多声道音频和数据整合到同一个数字接口中,通过单根线缆提供极为清晰的数字影音质量。HDMI特许公司提供营销、推广、授权许可和管理服务,同时还向采纳者、零售商和消费者宣传普及HDMI规范的优势。HDMI的创立者包括日立Maxell有限公司、皇家菲利浦电子有限公司、莱迪思半导体、松下公司、索尼公司、特艺集团和东芝公司。HDMI特许公司是莱迪斯半导体的全资子公司。如需了解更多HDMI规范的信息,请访问 www.hdmi.org。
以下为HDMI特许公司在美国以及其他国家所使用的商标或注册商标—HDMI、HDMI高清晰度多媒体接口(HDMI High-Definition Multimedia Interface)、高级HDMI线缆认证计划(Premium HDMI Cable Certification Program)、高级高速HDMI线缆(Premium High Speed HDMI Cable)、支持以太网络连接的高级高速HDMI线缆(Premium High Speed HDMI Cable with Ethernet)、高级HDMI线缆标识(the Premium HDMI Cable label)、高级HDMI线缆徽标(Premium HDMI Cable Logo)和HDMI徽标(the HDMI Logo)。
USB Type-C™ 和 USB-C™ 是 USB Implementers Forum 的商标。
在 businesswire.com 上查看源版本新闻稿: http://www.businesswire.com/ne ... h-CN/
销售额900milUSD,CAGR20%的连接器市场还有吗?---当然有!!!
技术分享 • 炮灰 发表了文章 • 0 个评论 • 2029 次浏览 • 2016-06-28 17:52
USB(通用串行总线 )I/O 确实是名至实归,从20年前的标准制定大会开始这个产品就逐渐成为电子产品的当之无愧的霸主,无所不在。今天我们就来小叙一下USB的发展史,让我们从USB1.0开始吧。
USB1.0其实是用来给一开始的计算机外设准备的标准,但是的传输速率只有12Mb/s,紧凑的4路信号通道,可以支持热插拔功能,简单的试配软件即可轻松连接外加设备到主机上。连接器有两种不同的壳体,即A&B型。主机可以最多连接127个外设产品附件,很小的插入力可以保证连接器在窄小的空间仍可以使用。5v的低电压也可以驱动外接设备,尤其是紧凑的外形和耐用性使其在通用计算机外设和消费电子产品中得以广泛运用。
2001年,为了提高传输速率,USB2.0的诞生了!这也是印证了USB是一个拥有自我发展与完善基因的产品线。USB2.0可以向下兼容USB1.0,所用的界面都是一致的,速率提高到了480Mb/s. 但是运用范围已经远远超过了电脑外设的范畴,拓展到了游戏、存储、音视频产品,GPS,智能电话,数码影像等等领域。紧接着随着随身携带设备的普及,Mini 和Micro USB标准也就应运而是生,并且在事实上已经成为了随身携带设备接口的行业标准。
随着更高速率及大容量视频文件的传播,人们需要更快速度的接口产品这样以来就在2008年底,诞生了USB3.0.它的理论传输速度已经到达5Gb/s, 相当于10倍USB2.0的传输速率。在其他方面3.0也比2.0的要好,比如它的功耗只有后者的不到一半,这一特性对当今的移动设备市场是个很大的推动。传输电流从500毫安涨到900毫安,在原有线路上扩容5根线(2对差分信号1个地线),而且还是可以兼容USB2.0.
大家还记得A&B型是为了防止插错吗?一般A用在主机端,B用在外围设备中。USB3.0A可以完全向下兼容2.0但是USB3.0B是不可对接USB2.0母端的。
最具竞争力的产品来自于INTEL开发的thunderbolt连接器,目前已经广泛运用到APPLE的产品中,传输速率10Gb/s左右,目前已经有部分高端存储器采用这种方案。
为了让大家都享有10G的传输速率,USB论坛在2013年7月发布了USB3.1。还是采用标准A和Micro-B两种形式,900mA,5V,都没有变化。它解决了人们对普通USB产品有配接方向性的抱怨。
INTEL最近发布了Thunderbolt3.0产品,会兼容USB-C产品形式,并将拥有20Gb/s,将来目标是40Gb/s的产品。
有迹象表明Type C将替换目前所有其他的USB家庭成员的形式,今后3年多时间里,它将跟随人们的脚步,在高速率、用户友好性、低产品高度、耐用性等方面迅速宽展用户群体。
Product Description
A. Interface type: Leaf spring on beam
B. Common trade names: SuperSpeed USB 3.0 / 3.1 SuperSpeed +, USB Type C, Gigalight
C. Most common packaging level: Level 6
D. Contact centerlines: 1.0mm
E. Wire or PCB termination method: Crimp/solder/weld on wire, through-hole, surface mount
on PCB.
F. Applicable industry standards: USB 3.0, 3.1, Type C
G. Competitive differentiating features: Price, production proximity to point of use, plating
quality.
Performance Ratings
A. Contact current rating: 0.5 amps ( Scalable up to 5 amps per connector)
B. Voltage rating: 30 volts, with some variation among suppliers
C. Available # of contact positions: 9 pin on 3.0 and 3.1, 24 on Type C
D. Rated mating cycles: Standard series = 1500, High durability series = 5,000, Type C = 10,000
E. Impedance: Differential impedance =75-105 ohms, +/- 15 Ohms (Average = 90 ohms)
F. High-speed bandwidth: to 10 Gb/s maximum
Product Market Data
Industry Segments / Typical Applications: Telecom, computer, consumer and industrial I/O.
Major Suppliers
Amphenol, FCI Electronics, Foxconn, Hirose, JAE, JST, Molex, Samtec, TE Connectivity 查看全部
USB1.0其实是用来给一开始的计算机外设准备的标准,但是的传输速率只有12Mb/s,紧凑的4路信号通道,可以支持热插拔功能,简单的试配软件即可轻松连接外加设备到主机上。连接器有两种不同的壳体,即A&B型。主机可以最多连接127个外设产品附件,很小的插入力可以保证连接器在窄小的空间仍可以使用。5v的低电压也可以驱动外接设备,尤其是紧凑的外形和耐用性使其在通用计算机外设和消费电子产品中得以广泛运用。
2001年,为了提高传输速率,USB2.0的诞生了!这也是印证了USB是一个拥有自我发展与完善基因的产品线。USB2.0可以向下兼容USB1.0,所用的界面都是一致的,速率提高到了480Mb/s. 但是运用范围已经远远超过了电脑外设的范畴,拓展到了游戏、存储、音视频产品,GPS,智能电话,数码影像等等领域。紧接着随着随身携带设备的普及,Mini 和Micro USB标准也就应运而是生,并且在事实上已经成为了随身携带设备接口的行业标准。
随着更高速率及大容量视频文件的传播,人们需要更快速度的接口产品这样以来就在2008年底,诞生了USB3.0.它的理论传输速度已经到达5Gb/s, 相当于10倍USB2.0的传输速率。在其他方面3.0也比2.0的要好,比如它的功耗只有后者的不到一半,这一特性对当今的移动设备市场是个很大的推动。传输电流从500毫安涨到900毫安,在原有线路上扩容5根线(2对差分信号1个地线),而且还是可以兼容USB2.0.
大家还记得A&B型是为了防止插错吗?一般A用在主机端,B用在外围设备中。USB3.0A可以完全向下兼容2.0但是USB3.0B是不可对接USB2.0母端的。
最具竞争力的产品来自于INTEL开发的thunderbolt连接器,目前已经广泛运用到APPLE的产品中,传输速率10Gb/s左右,目前已经有部分高端存储器采用这种方案。
为了让大家都享有10G的传输速率,USB论坛在2013年7月发布了USB3.1。还是采用标准A和Micro-B两种形式,900mA,5V,都没有变化。它解决了人们对普通USB产品有配接方向性的抱怨。
INTEL最近发布了Thunderbolt3.0产品,会兼容USB-C产品形式,并将拥有20Gb/s,将来目标是40Gb/s的产品。
有迹象表明Type C将替换目前所有其他的USB家庭成员的形式,今后3年多时间里,它将跟随人们的脚步,在高速率、用户友好性、低产品高度、耐用性等方面迅速宽展用户群体。
Product Description
A. Interface type: Leaf spring on beam
B. Common trade names: SuperSpeed USB 3.0 / 3.1 SuperSpeed +, USB Type C, Gigalight
C. Most common packaging level: Level 6
D. Contact centerlines: 1.0mm
E. Wire or PCB termination method: Crimp/solder/weld on wire, through-hole, surface mount
on PCB.
F. Applicable industry standards: USB 3.0, 3.1, Type C
G. Competitive differentiating features: Price, production proximity to point of use, plating
quality.
Performance Ratings
A. Contact current rating: 0.5 amps ( Scalable up to 5 amps per connector)
B. Voltage rating: 30 volts, with some variation among suppliers
C. Available # of contact positions: 9 pin on 3.0 and 3.1, 24 on Type C
D. Rated mating cycles: Standard series = 1500, High durability series = 5,000, Type C = 10,000
E. Impedance: Differential impedance =75-105 ohms, +/- 15 Ohms (Average = 90 ohms)
F. High-speed bandwidth: to 10 Gb/s maximum
Product Market Data
Industry Segments / Typical Applications: Telecom, computer, consumer and industrial I/O.
Major Suppliers
Amphenol, FCI Electronics, Foxconn, Hirose, JAE, JST, Molex, Samtec, TE Connectivity 查看全部
USB(通用串行总线 )I/O 确实是名至实归,从20年前的标准制定大会开始这个产品就逐渐成为电子产品的当之无愧的霸主,无所不在。今天我们就来小叙一下USB的发展史,让我们从USB1.0开始吧。
USB1.0其实是用来给一开始的计算机外设准备的标准,但是的传输速率只有12Mb/s,紧凑的4路信号通道,可以支持热插拔功能,简单的试配软件即可轻松连接外加设备到主机上。连接器有两种不同的壳体,即A&B型。主机可以最多连接127个外设产品附件,很小的插入力可以保证连接器在窄小的空间仍可以使用。5v的低电压也可以驱动外接设备,尤其是紧凑的外形和耐用性使其在通用计算机外设和消费电子产品中得以广泛运用。
2001年,为了提高传输速率,USB2.0的诞生了!这也是印证了USB是一个拥有自我发展与完善基因的产品线。USB2.0可以向下兼容USB1.0,所用的界面都是一致的,速率提高到了480Mb/s. 但是运用范围已经远远超过了电脑外设的范畴,拓展到了游戏、存储、音视频产品,GPS,智能电话,数码影像等等领域。紧接着随着随身携带设备的普及,Mini 和Micro USB标准也就应运而是生,并且在事实上已经成为了随身携带设备接口的行业标准。
随着更高速率及大容量视频文件的传播,人们需要更快速度的接口产品这样以来就在2008年底,诞生了USB3.0.它的理论传输速度已经到达5Gb/s, 相当于10倍USB2.0的传输速率。在其他方面3.0也比2.0的要好,比如它的功耗只有后者的不到一半,这一特性对当今的移动设备市场是个很大的推动。传输电流从500毫安涨到900毫安,在原有线路上扩容5根线(2对差分信号1个地线),而且还是可以兼容USB2.0.
大家还记得A&B型是为了防止插错吗?一般A用在主机端,B用在外围设备中。USB3.0A可以完全向下兼容2.0但是USB3.0B是不可对接USB2.0母端的。
最具竞争力的产品来自于INTEL开发的thunderbolt连接器,目前已经广泛运用到APPLE的产品中,传输速率10Gb/s左右,目前已经有部分高端存储器采用这种方案。
为了让大家都享有10G的传输速率,USB论坛在2013年7月发布了USB3.1。还是采用标准A和Micro-B两种形式,900mA,5V,都没有变化。它解决了人们对普通USB产品有配接方向性的抱怨。
INTEL最近发布了Thunderbolt3.0产品,会兼容USB-C产品形式,并将拥有20Gb/s,将来目标是40Gb/s的产品。
有迹象表明Type C将替换目前所有其他的USB家庭成员的形式,今后3年多时间里,它将跟随人们的脚步,在高速率、用户友好性、低产品高度、耐用性等方面迅速宽展用户群体。
Product Description
A. Interface type: Leaf spring on beam
B. Common trade names: SuperSpeed USB 3.0 / 3.1 SuperSpeed +, USB Type C, Gigalight
C. Most common packaging level: Level 6
D. Contact centerlines: 1.0mm
E. Wire or PCB termination method: Crimp/solder/weld on wire, through-hole, surface mount
on PCB.
F. Applicable industry standards: USB 3.0, 3.1, Type C
G. Competitive differentiating features: Price, production proximity to point of use, plating
quality.
Performance Ratings
A. Contact current rating: 0.5 amps ( Scalable up to 5 amps per connector)
B. Voltage rating: 30 volts, with some variation among suppliers
C. Available # of contact positions: 9 pin on 3.0 and 3.1, 24 on Type C
D. Rated mating cycles: Standard series = 1500, High durability series = 5,000, Type C = 10,000
E. Impedance: Differential impedance =75-105 ohms, +/- 15 Ohms (Average = 90 ohms)
F. High-speed bandwidth: to 10 Gb/s maximum
Product Market Data
Industry Segments / Typical Applications: Telecom, computer, consumer and industrial I/O.
Major Suppliers
Amphenol, FCI Electronics, Foxconn, Hirose, JAE, JST, Molex, Samtec, TE Connectivity
USB1.0其实是用来给一开始的计算机外设准备的标准,但是的传输速率只有12Mb/s,紧凑的4路信号通道,可以支持热插拔功能,简单的试配软件即可轻松连接外加设备到主机上。连接器有两种不同的壳体,即A&B型。主机可以最多连接127个外设产品附件,很小的插入力可以保证连接器在窄小的空间仍可以使用。5v的低电压也可以驱动外接设备,尤其是紧凑的外形和耐用性使其在通用计算机外设和消费电子产品中得以广泛运用。
2001年,为了提高传输速率,USB2.0的诞生了!这也是印证了USB是一个拥有自我发展与完善基因的产品线。USB2.0可以向下兼容USB1.0,所用的界面都是一致的,速率提高到了480Mb/s. 但是运用范围已经远远超过了电脑外设的范畴,拓展到了游戏、存储、音视频产品,GPS,智能电话,数码影像等等领域。紧接着随着随身携带设备的普及,Mini 和Micro USB标准也就应运而是生,并且在事实上已经成为了随身携带设备接口的行业标准。
随着更高速率及大容量视频文件的传播,人们需要更快速度的接口产品这样以来就在2008年底,诞生了USB3.0.它的理论传输速度已经到达5Gb/s, 相当于10倍USB2.0的传输速率。在其他方面3.0也比2.0的要好,比如它的功耗只有后者的不到一半,这一特性对当今的移动设备市场是个很大的推动。传输电流从500毫安涨到900毫安,在原有线路上扩容5根线(2对差分信号1个地线),而且还是可以兼容USB2.0.
大家还记得A&B型是为了防止插错吗?一般A用在主机端,B用在外围设备中。USB3.0A可以完全向下兼容2.0但是USB3.0B是不可对接USB2.0母端的。
最具竞争力的产品来自于INTEL开发的thunderbolt连接器,目前已经广泛运用到APPLE的产品中,传输速率10Gb/s左右,目前已经有部分高端存储器采用这种方案。
为了让大家都享有10G的传输速率,USB论坛在2013年7月发布了USB3.1。还是采用标准A和Micro-B两种形式,900mA,5V,都没有变化。它解决了人们对普通USB产品有配接方向性的抱怨。
INTEL最近发布了Thunderbolt3.0产品,会兼容USB-C产品形式,并将拥有20Gb/s,将来目标是40Gb/s的产品。
有迹象表明Type C将替换目前所有其他的USB家庭成员的形式,今后3年多时间里,它将跟随人们的脚步,在高速率、用户友好性、低产品高度、耐用性等方面迅速宽展用户群体。
Product Description
A. Interface type: Leaf spring on beam
B. Common trade names: SuperSpeed USB 3.0 / 3.1 SuperSpeed +, USB Type C, Gigalight
C. Most common packaging level: Level 6
D. Contact centerlines: 1.0mm
E. Wire or PCB termination method: Crimp/solder/weld on wire, through-hole, surface mount
on PCB.
F. Applicable industry standards: USB 3.0, 3.1, Type C
G. Competitive differentiating features: Price, production proximity to point of use, plating
quality.
Performance Ratings
A. Contact current rating: 0.5 amps ( Scalable up to 5 amps per connector)
B. Voltage rating: 30 volts, with some variation among suppliers
C. Available # of contact positions: 9 pin on 3.0 and 3.1, 24 on Type C
D. Rated mating cycles: Standard series = 1500, High durability series = 5,000, Type C = 10,000
E. Impedance: Differential impedance =75-105 ohms, +/- 15 Ohms (Average = 90 ohms)
F. High-speed bandwidth: to 10 Gb/s maximum
Product Market Data
Industry Segments / Typical Applications: Telecom, computer, consumer and industrial I/O.
Major Suppliers
Amphenol, FCI Electronics, Foxconn, Hirose, JAE, JST, Molex, Samtec, TE Connectivity
what kind of material offers reliability and safety in next-generation USB-C connectors?
技术分享 • Happy 发表了文章 • 0 个评论 • 2246 次浏览 • 2016-04-24 08:51
The Type-C connector supports the new SuperSpeed USB 3.1 format, which offers data-transfer rates as high as 10Gb/s or roughly double the speed of current USB 3.0 versions. It’s still backward-compatible with all the USB 2.0 formats (LS, FS, and HS), so even legacy systems will be able to take advantage of the new connector when it’s designed into dongles.
As a result, the USB-C connector will become the standard design from 2017 on, as decreed by USB Implementers Forum (USB IF), the non-profit corporation founded by the group of companies that developed the original Universal Serial Bus specification.
The USB Power Delivery specification is also being updated to enable USB PD to support the USB-C Cable and Connector specification, for charging up to 100W. USB-C specifications are contained within the overall USB 3.1 standard that also covers data transmission rates.
The various pins on the USB-C connector are spaced with a pitch of just 0.5mm, compared with 0.65mm on a USB 3.0 Micro B connector and 2.0mm on a USB Type A connector. The thinnest insulating wall has been reduced from 1.84mm on the USB Type A to a miniscule 0.12mm on a USB-C connector. It is difficult to successfully design and consistently mold parts with such thin walls and maintain the necessary mechanical and electrical properties.
Many component producers have begun developments in new USB-C connector designs using liquid crystal polymers (LCPs). Traditionally, LCPs are often favored in thin-wall electronics because of their excellent flow properties and because prices of some commodity grades are relatively low, sometimes under $10/kg; LCPs are well-known by USB connector makers, since they have been the favored polymer in previous generations of USB.
But in many cases, USB-C connectors are likely to fail stringent tests regarding their electrical properties, especially resistance to surface tracking, expressed as the Comparative Tracking Index (CTI), and also mechanical properties.
The CTI of the plastic that acts as an insulator as well as a mechanical anchor around the conductors is more than ever a key for product reliability with the USB-C connector. If the insulator does not have sufficiently high CTI, there is a risk that at some point a short circuit will result, damaging the device and possibly even starting a fire. This is not fearmongering – there are various reports of mobile devices catching fire during charging.
There are essentially three routes to reduce risk of fire hazard caused by tracking:
Increasing the creeping distance (defined by conductor pitch and insulator wall thickness)
Lowering the level of environmental pollution (dust, sweat, etc.)
Using an insulation material with a higher CTI
The creeping distance in the connectors is pre-defined and cannot be modified. Reduction of the level of environmental pollution at connector level can only be done by additional sealing, which adds to the cost of the device, so using a material for the insulator with as high a CTI as possible is the most viable solution to increase end-product safety.
Solutions more appropriate than those possible with LCPs or halogen-containing PAs (PA9T or PA6T) can be found with high-performance halogen-free polyamides, such as PA46 and PA4T.
High-performance polyamides 46 and 4T offer the best balance of mechanical and electrical properties and precision molding. Polyamides 46 and 4T already have been approved by several global producers for use in the next generation of USB-C connectors. They answer the need for improved levels of safety and reliability. PA46 and PA4T both have high CTIs of PLC class 0, well above the recommended 400V. They maintain this high performance for twice as long as alternative materials such as LCPs, most of which have CTIs under 400V.
An ideal solution, therefore, is to use PA4T for the first insert molding stage; this has a melting point of 325°C. The second insert molding stage can then be done with PA46, which has a melting point of 295°C.
The most difficult part of a USB-C connector to produce is the plug front housing. Very thin ribs require high flow and tough material, and there is a weld line on the front side, which mandates a material with high welding-line strength.
Material requirements listed below can all be fulfilled by high-performance polyamides PA46 and PA4T:
High flow for 0.12mm wall thickness design
High levels of stiffness, toughness, and welding line strength
High-wear friction strength and high retention force (10,000 times mating/unmating durability test)
Good process window
UL 94-V0 and high CTI (400V) to support USB PD 1.0 and 2.0 standards (up to 5A and 20V)
Good colorability to support consumer electronics market needs
Lead-free reflow soldering
Compatible with high-speed signal transfer up to 10Gb/s
[More details please visit www.dsm.com] 查看全部
As a result, the USB-C connector will become the standard design from 2017 on, as decreed by USB Implementers Forum (USB IF), the non-profit corporation founded by the group of companies that developed the original Universal Serial Bus specification.
The USB Power Delivery specification is also being updated to enable USB PD to support the USB-C Cable and Connector specification, for charging up to 100W. USB-C specifications are contained within the overall USB 3.1 standard that also covers data transmission rates.
The various pins on the USB-C connector are spaced with a pitch of just 0.5mm, compared with 0.65mm on a USB 3.0 Micro B connector and 2.0mm on a USB Type A connector. The thinnest insulating wall has been reduced from 1.84mm on the USB Type A to a miniscule 0.12mm on a USB-C connector. It is difficult to successfully design and consistently mold parts with such thin walls and maintain the necessary mechanical and electrical properties.
Many component producers have begun developments in new USB-C connector designs using liquid crystal polymers (LCPs). Traditionally, LCPs are often favored in thin-wall electronics because of their excellent flow properties and because prices of some commodity grades are relatively low, sometimes under $10/kg; LCPs are well-known by USB connector makers, since they have been the favored polymer in previous generations of USB.
But in many cases, USB-C connectors are likely to fail stringent tests regarding their electrical properties, especially resistance to surface tracking, expressed as the Comparative Tracking Index (CTI), and also mechanical properties.
The CTI of the plastic that acts as an insulator as well as a mechanical anchor around the conductors is more than ever a key for product reliability with the USB-C connector. If the insulator does not have sufficiently high CTI, there is a risk that at some point a short circuit will result, damaging the device and possibly even starting a fire. This is not fearmongering – there are various reports of mobile devices catching fire during charging.
There are essentially three routes to reduce risk of fire hazard caused by tracking:
Increasing the creeping distance (defined by conductor pitch and insulator wall thickness)
Lowering the level of environmental pollution (dust, sweat, etc.)
Using an insulation material with a higher CTI
The creeping distance in the connectors is pre-defined and cannot be modified. Reduction of the level of environmental pollution at connector level can only be done by additional sealing, which adds to the cost of the device, so using a material for the insulator with as high a CTI as possible is the most viable solution to increase end-product safety.
Solutions more appropriate than those possible with LCPs or halogen-containing PAs (PA9T or PA6T) can be found with high-performance halogen-free polyamides, such as PA46 and PA4T.
High-performance polyamides 46 and 4T offer the best balance of mechanical and electrical properties and precision molding. Polyamides 46 and 4T already have been approved by several global producers for use in the next generation of USB-C connectors. They answer the need for improved levels of safety and reliability. PA46 and PA4T both have high CTIs of PLC class 0, well above the recommended 400V. They maintain this high performance for twice as long as alternative materials such as LCPs, most of which have CTIs under 400V.
An ideal solution, therefore, is to use PA4T for the first insert molding stage; this has a melting point of 325°C. The second insert molding stage can then be done with PA46, which has a melting point of 295°C.
The most difficult part of a USB-C connector to produce is the plug front housing. Very thin ribs require high flow and tough material, and there is a weld line on the front side, which mandates a material with high welding-line strength.
Material requirements listed below can all be fulfilled by high-performance polyamides PA46 and PA4T:
High flow for 0.12mm wall thickness design
High levels of stiffness, toughness, and welding line strength
High-wear friction strength and high retention force (10,000 times mating/unmating durability test)
Good process window
UL 94-V0 and high CTI (400V) to support USB PD 1.0 and 2.0 standards (up to 5A and 20V)
Good colorability to support consumer electronics market needs
Lead-free reflow soldering
Compatible with high-speed signal transfer up to 10Gb/s
[More details please visit www.dsm.com] 查看全部
The Type-C connector supports the new SuperSpeed USB 3.1 format, which offers data-transfer rates as high as 10Gb/s or roughly double the speed of current USB 3.0 versions. It’s still backward-compatible with all the USB 2.0 formats (LS, FS, and HS), so even legacy systems will be able to take advantage of the new connector when it’s designed into dongles.
As a result, the USB-C connector will become the standard design from 2017 on, as decreed by USB Implementers Forum (USB IF), the non-profit corporation founded by the group of companies that developed the original Universal Serial Bus specification.
The USB Power Delivery specification is also being updated to enable USB PD to support the USB-C Cable and Connector specification, for charging up to 100W. USB-C specifications are contained within the overall USB 3.1 standard that also covers data transmission rates.
The various pins on the USB-C connector are spaced with a pitch of just 0.5mm, compared with 0.65mm on a USB 3.0 Micro B connector and 2.0mm on a USB Type A connector. The thinnest insulating wall has been reduced from 1.84mm on the USB Type A to a miniscule 0.12mm on a USB-C connector. It is difficult to successfully design and consistently mold parts with such thin walls and maintain the necessary mechanical and electrical properties.
Many component producers have begun developments in new USB-C connector designs using liquid crystal polymers (LCPs). Traditionally, LCPs are often favored in thin-wall electronics because of their excellent flow properties and because prices of some commodity grades are relatively low, sometimes under $10/kg; LCPs are well-known by USB connector makers, since they have been the favored polymer in previous generations of USB.
But in many cases, USB-C connectors are likely to fail stringent tests regarding their electrical properties, especially resistance to surface tracking, expressed as the Comparative Tracking Index (CTI), and also mechanical properties.
The CTI of the plastic that acts as an insulator as well as a mechanical anchor around the conductors is more than ever a key for product reliability with the USB-C connector. If the insulator does not have sufficiently high CTI, there is a risk that at some point a short circuit will result, damaging the device and possibly even starting a fire. This is not fearmongering – there are various reports of mobile devices catching fire during charging.
There are essentially three routes to reduce risk of fire hazard caused by tracking:
Increasing the creeping distance (defined by conductor pitch and insulator wall thickness)
Lowering the level of environmental pollution (dust, sweat, etc.)
Using an insulation material with a higher CTI
The creeping distance in the connectors is pre-defined and cannot be modified. Reduction of the level of environmental pollution at connector level can only be done by additional sealing, which adds to the cost of the device, so using a material for the insulator with as high a CTI as possible is the most viable solution to increase end-product safety.
Solutions more appropriate than those possible with LCPs or halogen-containing PAs (PA9T or PA6T) can be found with high-performance halogen-free polyamides, such as PA46 and PA4T.
High-performance polyamides 46 and 4T offer the best balance of mechanical and electrical properties and precision molding. Polyamides 46 and 4T already have been approved by several global producers for use in the next generation of USB-C connectors. They answer the need for improved levels of safety and reliability. PA46 and PA4T both have high CTIs of PLC class 0, well above the recommended 400V. They maintain this high performance for twice as long as alternative materials such as LCPs, most of which have CTIs under 400V.
An ideal solution, therefore, is to use PA4T for the first insert molding stage; this has a melting point of 325°C. The second insert molding stage can then be done with PA46, which has a melting point of 295°C.
The most difficult part of a USB-C connector to produce is the plug front housing. Very thin ribs require high flow and tough material, and there is a weld line on the front side, which mandates a material with high welding-line strength.
Material requirements listed below can all be fulfilled by high-performance polyamides PA46 and PA4T:
High flow for 0.12mm wall thickness design
High levels of stiffness, toughness, and welding line strength
High-wear friction strength and high retention force (10,000 times mating/unmating durability test)
Good process window
UL 94-V0 and high CTI (400V) to support USB PD 1.0 and 2.0 standards (up to 5A and 20V)
Good colorability to support consumer electronics market needs
Lead-free reflow soldering
Compatible with high-speed signal transfer up to 10Gb/s
[More details please visit www.dsm.com]
As a result, the USB-C connector will become the standard design from 2017 on, as decreed by USB Implementers Forum (USB IF), the non-profit corporation founded by the group of companies that developed the original Universal Serial Bus specification.
The USB Power Delivery specification is also being updated to enable USB PD to support the USB-C Cable and Connector specification, for charging up to 100W. USB-C specifications are contained within the overall USB 3.1 standard that also covers data transmission rates.
The various pins on the USB-C connector are spaced with a pitch of just 0.5mm, compared with 0.65mm on a USB 3.0 Micro B connector and 2.0mm on a USB Type A connector. The thinnest insulating wall has been reduced from 1.84mm on the USB Type A to a miniscule 0.12mm on a USB-C connector. It is difficult to successfully design and consistently mold parts with such thin walls and maintain the necessary mechanical and electrical properties.
Many component producers have begun developments in new USB-C connector designs using liquid crystal polymers (LCPs). Traditionally, LCPs are often favored in thin-wall electronics because of their excellent flow properties and because prices of some commodity grades are relatively low, sometimes under $10/kg; LCPs are well-known by USB connector makers, since they have been the favored polymer in previous generations of USB.
But in many cases, USB-C connectors are likely to fail stringent tests regarding their electrical properties, especially resistance to surface tracking, expressed as the Comparative Tracking Index (CTI), and also mechanical properties.
The CTI of the plastic that acts as an insulator as well as a mechanical anchor around the conductors is more than ever a key for product reliability with the USB-C connector. If the insulator does not have sufficiently high CTI, there is a risk that at some point a short circuit will result, damaging the device and possibly even starting a fire. This is not fearmongering – there are various reports of mobile devices catching fire during charging.
There are essentially three routes to reduce risk of fire hazard caused by tracking:
Increasing the creeping distance (defined by conductor pitch and insulator wall thickness)
Lowering the level of environmental pollution (dust, sweat, etc.)
Using an insulation material with a higher CTI
The creeping distance in the connectors is pre-defined and cannot be modified. Reduction of the level of environmental pollution at connector level can only be done by additional sealing, which adds to the cost of the device, so using a material for the insulator with as high a CTI as possible is the most viable solution to increase end-product safety.
Solutions more appropriate than those possible with LCPs or halogen-containing PAs (PA9T or PA6T) can be found with high-performance halogen-free polyamides, such as PA46 and PA4T.
High-performance polyamides 46 and 4T offer the best balance of mechanical and electrical properties and precision molding. Polyamides 46 and 4T already have been approved by several global producers for use in the next generation of USB-C connectors. They answer the need for improved levels of safety and reliability. PA46 and PA4T both have high CTIs of PLC class 0, well above the recommended 400V. They maintain this high performance for twice as long as alternative materials such as LCPs, most of which have CTIs under 400V.
An ideal solution, therefore, is to use PA4T for the first insert molding stage; this has a melting point of 325°C. The second insert molding stage can then be done with PA46, which has a melting point of 295°C.
The most difficult part of a USB-C connector to produce is the plug front housing. Very thin ribs require high flow and tough material, and there is a weld line on the front side, which mandates a material with high welding-line strength.
Material requirements listed below can all be fulfilled by high-performance polyamides PA46 and PA4T:
High flow for 0.12mm wall thickness design
High levels of stiffness, toughness, and welding line strength
High-wear friction strength and high retention force (10,000 times mating/unmating durability test)
Good process window
UL 94-V0 and high CTI (400V) to support USB PD 1.0 and 2.0 standards (up to 5A and 20V)
Good colorability to support consumer electronics market needs
Lead-free reflow soldering
Compatible with high-speed signal transfer up to 10Gb/s
[More details please visit www.dsm.com]